Spaces:
Sleeping
Sleeping
kgauvin603
commited on
Commit
•
7df12b8
1
Parent(s):
adbfa0a
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from sentence_transformers import SentenceTransformer
|
3 |
+
import chromadb
|
4 |
+
import pandas as pd
|
5 |
+
import os
|
6 |
+
import json
|
7 |
+
from pathlib import Path
|
8 |
+
from llama_index.llms.anyscale import Anyscale
|
9 |
+
from langchain_community.embeddings.sentence_transformer import SentenceTransformerEmbeddings
|
10 |
+
|
11 |
+
# Load the sentence transformer model with 384 dimensions
|
12 |
+
model = SentenceTransformer('all-MiniLM-L6-v2')
|
13 |
+
# model = SentenceTransformerEmbeddings(model_name='thenlper/gte-large') # Ensure this model outputs 384-dimensional embeddings
|
14 |
+
|
15 |
+
# Check the dimensionality of the model
|
16 |
+
embedding_dim = model.get_sentence_embedding_dimension()
|
17 |
+
print(f"Embedding Dimension: {embedding_dim}") # This should print 384
|
18 |
+
|
19 |
+
# Initialize the ChromaDB client
|
20 |
+
chroma_client = chromadb.Client()
|
21 |
+
|
22 |
+
# Function to build the database from CSV
|
23 |
+
def build_database():
|
24 |
+
# Read the CSV file
|
25 |
+
df = pd.read_csv('vector_store.csv')
|
26 |
+
|
27 |
+
# Create a collection
|
28 |
+
collection_name = 'Dataset-10k-companies'
|
29 |
+
|
30 |
+
# Delete the existing collection if it exists
|
31 |
+
# chroma_client.delete_collection(name=collection_name)
|
32 |
+
|
33 |
+
# Create a new collection
|
34 |
+
collection = chroma_client.create_collection(name=collection_name)
|
35 |
+
|
36 |
+
# Ensure embeddings are 384-dimensional
|
37 |
+
def ensure_dimensionality(embedding):
|
38 |
+
embedding = eval(embedding.replace(',,', ','))
|
39 |
+
if len(embedding) != 384:
|
40 |
+
raise ValueError("Embedding dimensionality is incorrect")
|
41 |
+
return embedding
|
42 |
+
|
43 |
+
# Add the data from the DataFrame to the collection
|
44 |
+
collection.add(
|
45 |
+
documents=df['documents'].tolist(),
|
46 |
+
ids=df['ids'].tolist(),
|
47 |
+
metadatas=df['metadatas'].apply(eval).tolist(),
|
48 |
+
embeddings=df['embeddings'].apply(ensure_dimensionality).tolist()
|
49 |
+
)
|
50 |
+
|
51 |
+
return collection
|
52 |
+
|
53 |
+
# Build the database when the app starts
|
54 |
+
collection = build_database()
|
55 |
+
|
56 |
+
# Access the Anyscale API key from environment variables
|
57 |
+
anyscale_api_key = os.environ.get('anyscale_api_key')
|
58 |
+
|
59 |
+
# Instantiate the Anyscale client
|
60 |
+
client = Anyscale(api_key=anyscale_api_key, model="meta-llama/Llama-2-70b-chat-hf")
|
61 |
+
|
62 |
+
# Function to get relevant chunks
|
63 |
+
def get_relevant_chunks(query, collection, top_n=3):
|
64 |
+
query_embedding = model.encode(query).tolist()
|
65 |
+
results = collection.query(query_embeddings=[query_embedding], n_results=top_n)
|
66 |
+
|
67 |
+
relevant_chunks = []
|
68 |
+
for i in range(len(results['documents'][0])):
|
69 |
+
chunk = results['documents'][0][i]
|
70 |
+
source = results['metadatas'][0][i]['source']
|
71 |
+
page = results['metadatas'][0][i]['page']
|
72 |
+
relevant_chunks.append((chunk, source, page))
|
73 |
+
|
74 |
+
return relevant_chunks
|
75 |
+
|
76 |
+
# Define system message for LLM
|
77 |
+
qna_system_message = """
|
78 |
+
You are an assistant to Finsights analysts. Your task is to provide relevant information about the financial performance of the companies followed by Finsights.
|
79 |
+
User input will include the necessary context for you to answer their questions. This context will begin with the token: ###Context.
|
80 |
+
The context contains references to specific portions of documents relevant to the user's query, along with source links.
|
81 |
+
The source for a context will begin with the token: ###Source.
|
82 |
+
When crafting your response:
|
83 |
+
1. Select only the context relevant to answer the question.
|
84 |
+
2. Include the source links in your response.
|
85 |
+
3. User questions will begin with the token: ###Question.
|
86 |
+
4. If the question is irrelevant to Finsights, respond with: "I am an assistant for Finsight Docs. I can only help you with questions related to Finsights."
|
87 |
+
Adhere to the following guidelines:
|
88 |
+
- Your response should only address the question asked and nothing else.
|
89 |
+
- Answer only using the context provided.
|
90 |
+
- Do not mention anything about the context in your final answer.
|
91 |
+
- If the answer is not found in the context, respond with: "I don't know."
|
92 |
+
- Always quote the source when you use the context. Cite the relevant source at the end of your response under the section - Source:
|
93 |
+
- Do not make up sources. Use only the links provided in the sources section of the context. You are prohibited from providing other links/sources.
|
94 |
+
Here is an example of how to structure your response:
|
95 |
+
Answer:
|
96 |
+
[Answer]
|
97 |
+
Source:
|
98 |
+
[Source]
|
99 |
+
"""
|
100 |
+
# Create a user message template
|
101 |
+
qna_user_message_template = """
|
102 |
+
###Context
|
103 |
+
Here are some documents and their source links that are relevant to the question mentioned below.
|
104 |
+
{context}
|
105 |
+
###Question
|
106 |
+
{question}
|
107 |
+
"""
|
108 |
+
|
109 |
+
# Function to get LLM response
|
110 |
+
def get_llm_response(prompt, max_attempts=3):
|
111 |
+
full_response = ""
|
112 |
+
for attempt in range(max_attempts):
|
113 |
+
try:
|
114 |
+
response = client.complete(prompt, max_tokens=1000) # Increase max_tokens if possible
|
115 |
+
chunk = response.text.strip()
|
116 |
+
full_response += chunk
|
117 |
+
if chunk.endswith((".", "!", "?")): # Check if response seems complete
|
118 |
+
break
|
119 |
+
else:
|
120 |
+
prompt = "Please continue from where you left off:\n" + chunk[-100:] # Use the last 100 chars as context
|
121 |
+
except Exception as e:
|
122 |
+
print(f"Attempt {attempt + 1} failed with error: {e}")
|
123 |
+
return full_response
|
124 |
+
|
125 |
+
# Prediction function
|
126 |
+
def predict(company, user_query):
|
127 |
+
try:
|
128 |
+
# Modify the query to include the company name
|
129 |
+
modified_query = f"{user_query} for {company}"
|
130 |
+
|
131 |
+
# Get relevant chunks
|
132 |
+
relevant_chunks = get_relevant_chunks(modified_query, collection)
|
133 |
+
|
134 |
+
# Prepare the context string
|
135 |
+
context = ""
|
136 |
+
for chunk, source, page in relevant_chunks:
|
137 |
+
context += chunk + "\n"
|
138 |
+
context += f"###Source {source}, Page {page}\n"
|
139 |
+
|
140 |
+
# Prepare the user message
|
141 |
+
user_message = qna_user_message_template.format(context=context, question=user_query)
|
142 |
+
|
143 |
+
# Craft the prompt to pass to the Llama model
|
144 |
+
prompt = f"{qna_system_message}\n\n{qna_user_message_template.format(context=context, question=user_query)}"
|
145 |
+
|
146 |
+
# Generate the response using the Llama model through Anyscale
|
147 |
+
answer = get_llm_response(prompt)
|
148 |
+
|
149 |
+
# Extract the generated response
|
150 |
+
# answer = response.text.strip()
|
151 |
+
|
152 |
+
# Log the interaction
|
153 |
+
log_interaction(company, user_query, context, answer)
|
154 |
+
|
155 |
+
return answer
|
156 |
+
except Exception as e:
|
157 |
+
return f"An error occurred: {str(e)}"
|
158 |
+
|
159 |
+
# Function to log interactions
|
160 |
+
def log_interaction(company, user_query, context, answer):
|
161 |
+
log_file = Path("interaction_log.jsonl")
|
162 |
+
with log_file.open("a") as f:
|
163 |
+
json.dump({
|
164 |
+
'company': company,
|
165 |
+
'user_query': user_query,
|
166 |
+
'context': context,
|
167 |
+
'answer': answer
|
168 |
+
}, f)
|
169 |
+
f.write("\n")
|
170 |
+
|
171 |
+
# Create Gradio interface
|
172 |
+
company_list = ["MSFT", "AWS", "Meta", "Google", "IBM"]
|
173 |
+
iface = gr.Interface(
|
174 |
+
fn=predict,
|
175 |
+
inputs=[
|
176 |
+
gr.Radio(company_list, label="Select Company"),
|
177 |
+
gr.Textbox(lines=2, placeholder="Enter your query here...", label="User Query")
|
178 |
+
],
|
179 |
+
outputs=gr.Textbox(label="Generated Answer"),
|
180 |
+
title="Company Reports Q&A",
|
181 |
+
description="Query the vector database and get an LLM response based on the documents in the collection."
|
182 |
+
)
|
183 |
+
|
184 |
+
# Launch the interface
|
185 |
+
iface.launch(share=True)
|