Update app.py
Browse files
app.py
CHANGED
|
@@ -1,701 +0,0 @@
|
|
| 1 |
-
# app.py
|
| 2 |
-
"""
|
| 3 |
-
Research-grade KV cache compression benchmark application.
|
| 4 |
-
RocketKV-enhanced SPG with 450x compression capability.
|
| 5 |
-
FIXED: CUDA assert errors, safer default parameters, GPT-2 sequence limits.
|
| 6 |
-
"""
|
| 7 |
-
|
| 8 |
-
import gradio as gr
|
| 9 |
-
import torch
|
| 10 |
-
import numpy as np
|
| 11 |
-
import matplotlib.pyplot as plt
|
| 12 |
-
import seaborn as sns
|
| 13 |
-
from datetime import datetime
|
| 14 |
-
import json
|
| 15 |
-
import pandas as pd
|
| 16 |
-
import tempfile
|
| 17 |
-
import os
|
| 18 |
-
import logging
|
| 19 |
-
from typing import Dict, List, Any, Tuple
|
| 20 |
-
|
| 21 |
-
from config import (
|
| 22 |
-
CompressionConfig, CompressionType, EnhancedSPGConfig,
|
| 23 |
-
ProvingConfig, ResearchConstants, SUPPORTED_MODELS, BENCHMARK_CONFIGS
|
| 24 |
-
)
|
| 25 |
-
from benchmark import (
|
| 26 |
-
run_research_benchmark, export_proof_bundle, verify_proof_bundle,
|
| 27 |
-
BenchmarkMetrics
|
| 28 |
-
)
|
| 29 |
-
from compression import detect_model_layers
|
| 30 |
-
|
| 31 |
-
# Configure logging
|
| 32 |
-
logging.basicConfig(level=logging.INFO)
|
| 33 |
-
logger = logging.getLogger(__name__)
|
| 34 |
-
|
| 35 |
-
# Set style for plots
|
| 36 |
-
plt.style.use('seaborn-v0_8-darkgrid')
|
| 37 |
-
sns.set_palette("husl")
|
| 38 |
-
|
| 39 |
-
# Global state for results
|
| 40 |
-
current_results = {}
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
def run_benchmark(model_key, compression_type, benchmark_type, dataset_subset,
|
| 44 |
-
eval_samples, n_seeds, seq_length, generation_length,
|
| 45 |
-
base_decay_rate, sink_tokens, recent_window,
|
| 46 |
-
enable_adaptive, target_perplexity_delta,
|
| 47 |
-
enable_progressive, progressive_quality_threshold,
|
| 48 |
-
initial_compression_ratio, max_compression_ratio,
|
| 49 |
-
sequence_compression_ratio, head_compression_ratio,
|
| 50 |
-
head_retention_mode, magnitude_threshold_mode,
|
| 51 |
-
min_tokens_for_stability, recent_boost_factor,
|
| 52 |
-
fail_on_cpu):
|
| 53 |
-
"""Run comprehensive benchmark with all compression methods."""
|
| 54 |
-
|
| 55 |
-
# Enable synchronous CUDA for debugging
|
| 56 |
-
if torch.cuda.is_available():
|
| 57 |
-
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
|
| 58 |
-
|
| 59 |
-
# Validate sequence length for GPT-2
|
| 60 |
-
if model_key == "gpt2" and seq_length > 1024:
|
| 61 |
-
logger.warning(f"Reducing sequence length from {seq_length} to 1024 for GPT-2")
|
| 62 |
-
seq_length = 1024
|
| 63 |
-
|
| 64 |
-
try:
|
| 65 |
-
# Create base configuration
|
| 66 |
-
base_config = CompressionConfig(
|
| 67 |
-
model_key=model_key,
|
| 68 |
-
compression_type=CompressionType[compression_type.upper()],
|
| 69 |
-
benchmark_type=benchmark_type,
|
| 70 |
-
benchmark_subset=dataset_subset if benchmark_type == "longbench" else None,
|
| 71 |
-
eval_samples=int(eval_samples),
|
| 72 |
-
n_seeds=int(n_seeds),
|
| 73 |
-
prefill_length=int(seq_length),
|
| 74 |
-
generation_length=int(generation_length),
|
| 75 |
-
fail_on_cpu_fallback=fail_on_cpu
|
| 76 |
-
)
|
| 77 |
-
|
| 78 |
-
# Configure Enhanced SPG with safer parameters
|
| 79 |
-
base_config.enhanced_spg_config = EnhancedSPGConfig(
|
| 80 |
-
base_decay_rate=float(base_decay_rate),
|
| 81 |
-
sink_tokens=int(sink_tokens),
|
| 82 |
-
recent_window=int(recent_window),
|
| 83 |
-
enable_adaptive=enable_adaptive,
|
| 84 |
-
target_perplexity_delta=float(target_perplexity_delta),
|
| 85 |
-
enable_progressive=enable_progressive,
|
| 86 |
-
quality_threshold=float(progressive_quality_threshold),
|
| 87 |
-
initial_compression_ratio=float(initial_compression_ratio),
|
| 88 |
-
max_compression_ratio=float(max_compression_ratio),
|
| 89 |
-
target_compression_ratio=float(max_compression_ratio),
|
| 90 |
-
sequence_compression_ratio=float(sequence_compression_ratio),
|
| 91 |
-
head_compression_ratio=float(head_compression_ratio),
|
| 92 |
-
head_retention_mode=head_retention_mode,
|
| 93 |
-
magnitude_threshold_mode=magnitude_threshold_mode,
|
| 94 |
-
min_tokens_for_stability=int(min_tokens_for_stability),
|
| 95 |
-
recent_boost_factor=float(recent_boost_factor),
|
| 96 |
-
enable_two_stage=True,
|
| 97 |
-
use_hybrid_sparse_attention=True,
|
| 98 |
-
use_snapkv_plus_plus=True,
|
| 99 |
-
stage1_compression_ratio=20.0, # Safer default
|
| 100 |
-
stage2_compression_ratio=20.0 # For 400x total
|
| 101 |
-
)
|
| 102 |
-
|
| 103 |
-
# Store results
|
| 104 |
-
results = {}
|
| 105 |
-
model_name = base_config.model_name
|
| 106 |
-
|
| 107 |
-
# Run benchmark for selected compression type
|
| 108 |
-
logger.info(f"Running {compression_type} benchmark...")
|
| 109 |
-
metrics, summary, records, fingerprints = run_research_benchmark(
|
| 110 |
-
model_name, base_config
|
| 111 |
-
)
|
| 112 |
-
|
| 113 |
-
results[compression_type] = {
|
| 114 |
-
'metrics': metrics,
|
| 115 |
-
'summary': summary,
|
| 116 |
-
'records': records
|
| 117 |
-
}
|
| 118 |
-
|
| 119 |
-
# Also run NONE compression for baseline comparison
|
| 120 |
-
if compression_type != "none":
|
| 121 |
-
logger.info("Running baseline (no compression) benchmark...")
|
| 122 |
-
baseline_config = CompressionConfig(
|
| 123 |
-
model_key=model_key,
|
| 124 |
-
compression_type=CompressionType.NONE,
|
| 125 |
-
benchmark_type=benchmark_type,
|
| 126 |
-
benchmark_subset=dataset_subset if benchmark_type == "longbench" else None,
|
| 127 |
-
eval_samples=int(eval_samples),
|
| 128 |
-
n_seeds=int(n_seeds),
|
| 129 |
-
prefill_length=int(seq_length),
|
| 130 |
-
generation_length=int(generation_length),
|
| 131 |
-
fail_on_cpu_fallback=fail_on_cpu
|
| 132 |
-
)
|
| 133 |
-
|
| 134 |
-
try:
|
| 135 |
-
baseline_metrics, baseline_summary, baseline_records, _ = run_research_benchmark(
|
| 136 |
-
model_name, baseline_config
|
| 137 |
-
)
|
| 138 |
-
|
| 139 |
-
results['none'] = {
|
| 140 |
-
'metrics': baseline_metrics,
|
| 141 |
-
'summary': baseline_summary,
|
| 142 |
-
'records': baseline_records
|
| 143 |
-
}
|
| 144 |
-
except Exception as e:
|
| 145 |
-
logger.error(f"Baseline benchmark failed: {e}")
|
| 146 |
-
# Continue without baseline
|
| 147 |
-
|
| 148 |
-
# Store globally for export
|
| 149 |
-
global current_results
|
| 150 |
-
current_results = results
|
| 151 |
-
|
| 152 |
-
# Create visualizations
|
| 153 |
-
plots = create_visualizations(results, benchmark_type)
|
| 154 |
-
|
| 155 |
-
# Create summary text
|
| 156 |
-
summary_text = create_summary_text(results, benchmark_type)
|
| 157 |
-
|
| 158 |
-
# Export proof bundle
|
| 159 |
-
with tempfile.TemporaryDirectory() as tmpdir:
|
| 160 |
-
bundle_path = export_proof_bundle(
|
| 161 |
-
tmpdir, base_config, metrics, summary, records, fingerprints
|
| 162 |
-
)
|
| 163 |
-
|
| 164 |
-
# Verify the bundle
|
| 165 |
-
verification = verify_proof_bundle(
|
| 166 |
-
tmpdir, base_config, base_config.proving
|
| 167 |
-
)
|
| 168 |
-
|
| 169 |
-
verification_text = f"Proof verification: {'PASSED ✓' if verification['ok'] else 'FAILED ✗'}"
|
| 170 |
-
if not verification['ok']:
|
| 171 |
-
verification_text += f"\nFailures: {verification['failures']}"
|
| 172 |
-
|
| 173 |
-
return plots, summary_text, verification_text
|
| 174 |
-
|
| 175 |
-
except Exception as e:
|
| 176 |
-
logger.error(f"Benchmark failed: {e}", exc_info=True)
|
| 177 |
-
return [], f"Error: {str(e)}", "Verification failed due to error"
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
def create_visualizations(results: Dict, benchmark_type: str) -> List:
|
| 181 |
-
"""Create comprehensive visualizations from benchmark results."""
|
| 182 |
-
plots = []
|
| 183 |
-
|
| 184 |
-
# 1. Compression Ratio Comparison
|
| 185 |
-
fig, ax = plt.subplots(figsize=(10, 6))
|
| 186 |
-
methods = []
|
| 187 |
-
ratios = []
|
| 188 |
-
errors = []
|
| 189 |
-
|
| 190 |
-
for method, data in results.items():
|
| 191 |
-
if 'metrics' in data and hasattr(data['metrics'], 'compression_ratio_mean'):
|
| 192 |
-
methods.append(method.upper())
|
| 193 |
-
ratios.append(data['metrics'].compression_ratio_mean)
|
| 194 |
-
errors.append(data['metrics'].compression_ratio_std)
|
| 195 |
-
|
| 196 |
-
if methods:
|
| 197 |
-
bars = ax.bar(methods, ratios, yerr=errors, capsize=5)
|
| 198 |
-
ax.set_ylabel('Compression Ratio')
|
| 199 |
-
ax.set_title('KV Cache Compression Ratios')
|
| 200 |
-
ax.grid(True, alpha=0.3)
|
| 201 |
-
|
| 202 |
-
# Add value labels on bars
|
| 203 |
-
for bar, ratio in zip(bars, ratios):
|
| 204 |
-
height = bar.get_height()
|
| 205 |
-
ax.text(bar.get_x() + bar.get_width()/2., height,
|
| 206 |
-
f'{ratio:.1f}x', ha='center', va='bottom')
|
| 207 |
-
|
| 208 |
-
plt.tight_layout()
|
| 209 |
-
plots.append(fig)
|
| 210 |
-
|
| 211 |
-
# 2. Memory Usage Comparison
|
| 212 |
-
fig, ax = plt.subplots(figsize=(10, 6))
|
| 213 |
-
memories = []
|
| 214 |
-
memory_errors = []
|
| 215 |
-
|
| 216 |
-
for method, data in results.items():
|
| 217 |
-
if 'metrics' in data and hasattr(data['metrics'], 'kv_cache_memory_mb'):
|
| 218 |
-
memories.append(data['metrics'].kv_cache_memory_mb)
|
| 219 |
-
memory_errors.append(0) # No std for memory in current implementation
|
| 220 |
-
|
| 221 |
-
if methods and memories:
|
| 222 |
-
bars = ax.bar(methods, memories, yerr=memory_errors, capsize=5, color='coral')
|
| 223 |
-
ax.set_ylabel('Memory Usage (MB)')
|
| 224 |
-
ax.set_title('KV Cache Memory Footprint')
|
| 225 |
-
ax.grid(True, alpha=0.3)
|
| 226 |
-
|
| 227 |
-
for bar, mem in zip(bars, memories):
|
| 228 |
-
height = bar.get_height()
|
| 229 |
-
ax.text(bar.get_x() + bar.get_width()/2., height,
|
| 230 |
-
f'{mem:.1f}', ha='center', va='bottom')
|
| 231 |
-
|
| 232 |
-
plt.tight_layout()
|
| 233 |
-
plots.append(fig)
|
| 234 |
-
|
| 235 |
-
# 3. Benchmark-specific metrics
|
| 236 |
-
if benchmark_type == "wikitext":
|
| 237 |
-
# Perplexity comparison
|
| 238 |
-
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 6))
|
| 239 |
-
|
| 240 |
-
# Prefill perplexity
|
| 241 |
-
prefill_ppls = []
|
| 242 |
-
prefill_errors = []
|
| 243 |
-
gen_ppls = []
|
| 244 |
-
gen_errors = []
|
| 245 |
-
|
| 246 |
-
for method, data in results.items():
|
| 247 |
-
if 'metrics' in data:
|
| 248 |
-
metrics = data['metrics']
|
| 249 |
-
if hasattr(metrics, 'prefill_perplexity_mean'):
|
| 250 |
-
prefill_ppls.append(metrics.prefill_perplexity_mean)
|
| 251 |
-
prefill_errors.append(metrics.prefill_perplexity_std)
|
| 252 |
-
if hasattr(metrics, 'generation_perplexity_mean'):
|
| 253 |
-
gen_ppls.append(metrics.generation_perplexity_mean)
|
| 254 |
-
gen_errors.append(metrics.generation_perplexity_std)
|
| 255 |
-
|
| 256 |
-
if prefill_ppls:
|
| 257 |
-
ax1.bar(methods[:len(prefill_ppls)], prefill_ppls, yerr=prefill_errors, capsize=5, color='skyblue')
|
| 258 |
-
ax1.set_ylabel('Perplexity')
|
| 259 |
-
ax1.set_title('Prefill Perplexity')
|
| 260 |
-
ax1.grid(True, alpha=0.3)
|
| 261 |
-
|
| 262 |
-
if gen_ppls:
|
| 263 |
-
ax2.bar(methods[:len(gen_ppls)], gen_ppls, yerr=gen_errors, capsize=5, color='lightgreen')
|
| 264 |
-
ax2.set_ylabel('Perplexity')
|
| 265 |
-
ax2.set_title('Generation Perplexity')
|
| 266 |
-
ax2.grid(True, alpha=0.3)
|
| 267 |
-
|
| 268 |
-
plt.suptitle('Quality Metrics: Perplexity Comparison')
|
| 269 |
-
plt.tight_layout()
|
| 270 |
-
plots.append(fig)
|
| 271 |
-
|
| 272 |
-
elif benchmark_type in ["niah", "ruler", "scbench"]:
|
| 273 |
-
# Accuracy metrics
|
| 274 |
-
fig, ax = plt.subplots(figsize=(10, 6))
|
| 275 |
-
accuracies = []
|
| 276 |
-
|
| 277 |
-
for method, data in results.items():
|
| 278 |
-
if 'summary' in data:
|
| 279 |
-
if benchmark_type == "niah" and 'niah_accuracy' in data['summary']:
|
| 280 |
-
accuracies.append(data['summary']['niah_accuracy'])
|
| 281 |
-
elif benchmark_type == "ruler" and 'ruler_exact_match' in data['summary']:
|
| 282 |
-
accuracies.append(data['summary']['ruler_exact_match'])
|
| 283 |
-
elif benchmark_type == "scbench" and 'scbench_accuracy' in data['summary']:
|
| 284 |
-
accuracies.append(data['summary']['scbench_accuracy'])
|
| 285 |
-
|
| 286 |
-
if accuracies:
|
| 287 |
-
bars = ax.bar(methods[:len(accuracies)], accuracies, color='gold')
|
| 288 |
-
ax.set_ylabel('Accuracy')
|
| 289 |
-
ax.set_ylim(0, 1.1)
|
| 290 |
-
ax.set_title(f'{benchmark_type.upper()} Accuracy')
|
| 291 |
-
ax.grid(True, alpha=0.3)
|
| 292 |
-
|
| 293 |
-
for bar, acc in zip(bars, accuracies):
|
| 294 |
-
height = bar.get_height()
|
| 295 |
-
ax.text(bar.get_x() + bar.get_width()/2., height,
|
| 296 |
-
f'{acc:.2%}', ha='center', va='bottom')
|
| 297 |
-
|
| 298 |
-
plt.tight_layout()
|
| 299 |
-
plots.append(fig)
|
| 300 |
-
|
| 301 |
-
# 4. Speed comparison
|
| 302 |
-
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 6))
|
| 303 |
-
|
| 304 |
-
prefill_times = []
|
| 305 |
-
decode_times = []
|
| 306 |
-
|
| 307 |
-
for method, data in results.items():
|
| 308 |
-
if 'metrics' in data:
|
| 309 |
-
metrics = data['metrics']
|
| 310 |
-
if hasattr(metrics, 'prefill_time_mean'):
|
| 311 |
-
prefill_times.append(metrics.prefill_time_mean * 1000) # Convert to ms
|
| 312 |
-
if hasattr(metrics, 'decode_time_per_token_mean_ms'):
|
| 313 |
-
decode_times.append(metrics.decode_time_per_token_mean_ms)
|
| 314 |
-
|
| 315 |
-
if prefill_times:
|
| 316 |
-
ax1.bar(methods[:len(prefill_times)], prefill_times, color='purple', alpha=0.7)
|
| 317 |
-
ax1.set_ylabel('Time (ms)')
|
| 318 |
-
ax1.set_title('Prefill Time')
|
| 319 |
-
ax1.grid(True, alpha=0.3)
|
| 320 |
-
|
| 321 |
-
if decode_times:
|
| 322 |
-
ax2.bar(methods[:len(decode_times)], decode_times, color='orange', alpha=0.7)
|
| 323 |
-
ax2.set_ylabel('Time per Token (ms)')
|
| 324 |
-
ax2.set_title('Decode Time')
|
| 325 |
-
ax2.grid(True, alpha=0.3)
|
| 326 |
-
|
| 327 |
-
plt.suptitle('Performance Metrics: Speed Comparison')
|
| 328 |
-
plt.tight_layout()
|
| 329 |
-
plots.append(fig)
|
| 330 |
-
|
| 331 |
-
return plots
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
def create_summary_text(results: Dict, benchmark_type: str) -> str:
|
| 335 |
-
"""Create detailed summary text from results."""
|
| 336 |
-
summary_lines = []
|
| 337 |
-
summary_lines.append("=" * 60)
|
| 338 |
-
summary_lines.append("BENCHMARK RESULTS SUMMARY")
|
| 339 |
-
summary_lines.append("=" * 60)
|
| 340 |
-
summary_lines.append(f"Benchmark Type: {benchmark_type.upper()}")
|
| 341 |
-
summary_lines.append(f"Timestamp: {datetime.now().isoformat()}")
|
| 342 |
-
summary_lines.append("")
|
| 343 |
-
|
| 344 |
-
for method, data in results.items():
|
| 345 |
-
if 'summary' not in data:
|
| 346 |
-
continue
|
| 347 |
-
|
| 348 |
-
summary = data['summary']
|
| 349 |
-
metrics = data['metrics'] if 'metrics' in data else None
|
| 350 |
-
|
| 351 |
-
summary_lines.append(f"Method: {method.upper()}")
|
| 352 |
-
summary_lines.append("-" * 40)
|
| 353 |
-
|
| 354 |
-
# Compression metrics
|
| 355 |
-
if 'compression_ratio' in summary:
|
| 356 |
-
summary_lines.append(f"Compression Ratio: {summary['compression_ratio']:.1f}x")
|
| 357 |
-
if 'kv_cache_memory_mb' in summary:
|
| 358 |
-
summary_lines.append(f"KV Cache Memory: {summary['kv_cache_memory_mb']:.2f} MB")
|
| 359 |
-
|
| 360 |
-
# Quality metrics
|
| 361 |
-
if benchmark_type == "wikitext":
|
| 362 |
-
if 'prefill_perplexity' in summary:
|
| 363 |
-
summary_lines.append(f"Prefill Perplexity: {summary['prefill_perplexity']:.2f}")
|
| 364 |
-
if 'generation_perplexity' in summary:
|
| 365 |
-
summary_lines.append(f"Generation Perplexity: {summary['generation_perplexity']:.2f}")
|
| 366 |
-
elif benchmark_type == "niah" and 'niah_accuracy' in summary:
|
| 367 |
-
summary_lines.append(f"NIAH Accuracy: {summary['niah_accuracy']:.2%}")
|
| 368 |
-
elif benchmark_type == "ruler" and 'ruler_exact_match' in summary:
|
| 369 |
-
summary_lines.append(f"RULER Exact Match: {summary['ruler_exact_match']:.2%}")
|
| 370 |
-
elif benchmark_type == "scbench" and 'scbench_accuracy' in summary:
|
| 371 |
-
summary_lines.append(f"SCBench Accuracy: {summary['scbench_accuracy']:.2%}")
|
| 372 |
-
elif benchmark_type == "longbench" and 'longbench_accuracy' in summary:
|
| 373 |
-
summary_lines.append(f"LongBench Accuracy: {summary['longbench_accuracy']:.2%}")
|
| 374 |
-
|
| 375 |
-
# Performance metrics
|
| 376 |
-
if 'prefill_time_ms' in summary:
|
| 377 |
-
summary_lines.append(f"Prefill Time: {summary['prefill_time_ms']:.2f} ms")
|
| 378 |
-
if 'decode_time_ms' in summary:
|
| 379 |
-
summary_lines.append(f"Decode Time per Token: {summary['decode_time_ms']:.2f} ms")
|
| 380 |
-
if 'throughput_tokens_sec' in summary:
|
| 381 |
-
summary_lines.append(f"Throughput: {summary['throughput_tokens_sec']:.1f} tokens/sec")
|
| 382 |
-
if 'end_to_end_throughput' in summary:
|
| 383 |
-
summary_lines.append(f"End-to-End Throughput: {summary['end_to_end_throughput']:.1f} tokens/sec")
|
| 384 |
-
if 'peak_memory_mb' in summary:
|
| 385 |
-
summary_lines.append(f"Peak Memory: {summary['peak_memory_mb']:.2f} MB")
|
| 386 |
-
|
| 387 |
-
summary_lines.append("")
|
| 388 |
-
|
| 389 |
-
# Add statistical comparison if baseline is available
|
| 390 |
-
if 'none' in results and len(results) > 1:
|
| 391 |
-
summary_lines.append("COMPARISON WITH BASELINE")
|
| 392 |
-
summary_lines.append("-" * 40)
|
| 393 |
-
|
| 394 |
-
baseline_summary = results['none']['summary']
|
| 395 |
-
|
| 396 |
-
for method, data in results.items():
|
| 397 |
-
if method == 'none' or 'summary' not in data:
|
| 398 |
-
continue
|
| 399 |
-
|
| 400 |
-
summary = data['summary']
|
| 401 |
-
|
| 402 |
-
# Calculate improvements
|
| 403 |
-
if 'compression_ratio' in summary:
|
| 404 |
-
summary_lines.append(f"{method.upper()} vs Baseline:")
|
| 405 |
-
summary_lines.append(f" Compression: {summary['compression_ratio']:.1f}x")
|
| 406 |
-
|
| 407 |
-
if 'kv_cache_memory_mb' in summary and 'kv_cache_memory_mb' in baseline_summary:
|
| 408 |
-
baseline_mem = baseline_summary['kv_cache_memory_mb']
|
| 409 |
-
method_mem = summary['kv_cache_memory_mb']
|
| 410 |
-
if baseline_mem > 0:
|
| 411 |
-
reduction = (1 - method_mem / baseline_mem) * 100
|
| 412 |
-
summary_lines.append(f" Memory Reduction: {reduction:.1f}%")
|
| 413 |
-
|
| 414 |
-
# Quality degradation for WikiText
|
| 415 |
-
if benchmark_type == "wikitext":
|
| 416 |
-
if 'generation_perplexity' in summary and 'generation_perplexity' in baseline_summary:
|
| 417 |
-
baseline_ppl = baseline_summary['generation_perplexity']
|
| 418 |
-
method_ppl = summary['generation_perplexity']
|
| 419 |
-
if baseline_ppl > 0:
|
| 420 |
-
degradation = ((method_ppl - baseline_ppl) / baseline_ppl) * 100
|
| 421 |
-
summary_lines.append(f" Perplexity Change: {degradation:+.1f}%")
|
| 422 |
-
|
| 423 |
-
# Accuracy comparison for other benchmarks
|
| 424 |
-
elif benchmark_type == "niah":
|
| 425 |
-
if 'niah_accuracy' in summary and 'niah_accuracy' in baseline_summary:
|
| 426 |
-
acc_diff = summary['niah_accuracy'] - baseline_summary['niah_accuracy']
|
| 427 |
-
summary_lines.append(f" Accuracy Difference: {acc_diff:+.2%}")
|
| 428 |
-
|
| 429 |
-
summary_lines.append("")
|
| 430 |
-
|
| 431 |
-
return "\n".join(summary_lines)
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
def export_results(format_type):
|
| 435 |
-
"""Export current results in specified format."""
|
| 436 |
-
if not current_results:
|
| 437 |
-
return "No results to export. Please run a benchmark first."
|
| 438 |
-
|
| 439 |
-
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 440 |
-
|
| 441 |
-
if format_type == "JSON":
|
| 442 |
-
filename = f"results_{timestamp}.json"
|
| 443 |
-
|
| 444 |
-
# Convert numpy types to Python types for JSON serialization
|
| 445 |
-
def convert_numpy(obj):
|
| 446 |
-
if isinstance(obj, np.ndarray):
|
| 447 |
-
return obj.tolist()
|
| 448 |
-
elif isinstance(obj, (np.integer, np.int64, np.int32)):
|
| 449 |
-
return int(obj)
|
| 450 |
-
elif isinstance(obj, (np.floating, np.float64, np.float32)):
|
| 451 |
-
return float(obj)
|
| 452 |
-
elif isinstance(obj, BenchmarkMetrics):
|
| 453 |
-
return obj.__dict__
|
| 454 |
-
return obj
|
| 455 |
-
|
| 456 |
-
serializable_results = json.loads(
|
| 457 |
-
json.dumps(current_results, default=convert_numpy)
|
| 458 |
-
)
|
| 459 |
-
|
| 460 |
-
with open(filename, 'w') as f:
|
| 461 |
-
json.dump(serializable_results, f, indent=2)
|
| 462 |
-
|
| 463 |
-
return f"Results exported to {filename}"
|
| 464 |
-
|
| 465 |
-
elif format_type == "CSV":
|
| 466 |
-
filename = f"results_{timestamp}.csv"
|
| 467 |
-
|
| 468 |
-
# Flatten results for CSV
|
| 469 |
-
rows = []
|
| 470 |
-
for method, data in current_results.items():
|
| 471 |
-
if 'summary' in data:
|
| 472 |
-
row = {'method': method}
|
| 473 |
-
row.update(data['summary'])
|
| 474 |
-
rows.append(row)
|
| 475 |
-
|
| 476 |
-
if rows:
|
| 477 |
-
df = pd.DataFrame(rows)
|
| 478 |
-
df.to_csv(filename, index=False)
|
| 479 |
-
return f"Results exported to {filename}"
|
| 480 |
-
else:
|
| 481 |
-
return "No summary data to export"
|
| 482 |
-
|
| 483 |
-
elif format_type == "LaTeX":
|
| 484 |
-
filename = f"results_{timestamp}.tex"
|
| 485 |
-
|
| 486 |
-
# Create LaTeX table
|
| 487 |
-
latex_lines = [
|
| 488 |
-
"\\begin{table}[h]",
|
| 489 |
-
"\\centering",
|
| 490 |
-
"\\caption{KV Cache Compression Results}",
|
| 491 |
-
"\\begin{tabular}{lccc}",
|
| 492 |
-
"\\hline",
|
| 493 |
-
"Method & Compression & Memory (MB) & Throughput (tok/s) \\\\",
|
| 494 |
-
"\\hline"
|
| 495 |
-
]
|
| 496 |
-
|
| 497 |
-
for method, data in current_results.items():
|
| 498 |
-
if 'summary' in data:
|
| 499 |
-
s = data['summary']
|
| 500 |
-
comp = f"{s.get('compression_ratio', 1.0):.1f}x"
|
| 501 |
-
mem = f"{s.get('kv_cache_memory_mb', 0):.1f}"
|
| 502 |
-
thr = f"{s.get('throughput_tokens_sec', 0):.1f}"
|
| 503 |
-
latex_lines.append(f"{method.upper()} & {comp} & {mem} & {thr} \\\\")
|
| 504 |
-
|
| 505 |
-
latex_lines.extend([
|
| 506 |
-
"\\hline",
|
| 507 |
-
"\\end{tabular}",
|
| 508 |
-
"\\end{table}"
|
| 509 |
-
])
|
| 510 |
-
|
| 511 |
-
with open(filename, 'w') as f:
|
| 512 |
-
f.write('\n'.join(latex_lines))
|
| 513 |
-
|
| 514 |
-
return f"LaTeX table exported to {filename}"
|
| 515 |
-
|
| 516 |
-
return "Invalid export format"
|
| 517 |
-
|
| 518 |
-
|
| 519 |
-
# Create Gradio interface
|
| 520 |
-
def create_interface():
|
| 521 |
-
with gr.Blocks(title="RocketKV-Enhanced SPG Benchmark") as demo:
|
| 522 |
-
gr.Markdown("""
|
| 523 |
-
# 🚀 RocketKV-Enhanced SPG Compression Benchmark
|
| 524 |
-
|
| 525 |
-
Research-grade KV cache compression with **450x compression capability**.
|
| 526 |
-
Implements Enhanced Sliding Precision Gradient with RocketKV-style optimizations.
|
| 527 |
-
|
| 528 |
-
**Features:**
|
| 529 |
-
- Multiple compression methods (SPG, Adaptive, Enhanced, Progressive)
|
| 530 |
-
- Comprehensive benchmarks (WikiText, NIAH, RULER, SCBench, LongBench)
|
| 531 |
-
- Attestable proof generation and verification
|
| 532 |
-
- Real-time visualization and analysis
|
| 533 |
-
""")
|
| 534 |
-
|
| 535 |
-
with gr.Tab("Configuration"):
|
| 536 |
-
with gr.Row():
|
| 537 |
-
with gr.Column():
|
| 538 |
-
gr.Markdown("### Model & Benchmark Settings")
|
| 539 |
-
model_dropdown = gr.Dropdown(
|
| 540 |
-
choices=list(SUPPORTED_MODELS.keys()),
|
| 541 |
-
value="gpt2",
|
| 542 |
-
label="Model"
|
| 543 |
-
)
|
| 544 |
-
|
| 545 |
-
compression_dropdown = gr.Dropdown(
|
| 546 |
-
choices=["none", "spg", "adaptive_spg", "enhanced_spg", "progressive_spg"],
|
| 547 |
-
value="enhanced_spg",
|
| 548 |
-
label="Compression Method"
|
| 549 |
-
)
|
| 550 |
-
|
| 551 |
-
benchmark_dropdown = gr.Dropdown(
|
| 552 |
-
choices=["wikitext", "niah", "ruler", "scbench", "longbench"],
|
| 553 |
-
value="wikitext",
|
| 554 |
-
label="Benchmark Type"
|
| 555 |
-
)
|
| 556 |
-
|
| 557 |
-
dataset_subset = gr.Dropdown(
|
| 558 |
-
choices=BENCHMARK_CONFIGS["longbench"]["subsets"],
|
| 559 |
-
value="narrativeqa",
|
| 560 |
-
label="LongBench Subset (if applicable)",
|
| 561 |
-
visible=False
|
| 562 |
-
)
|
| 563 |
-
|
| 564 |
-
# Show/hide subset based on benchmark type
|
| 565 |
-
def update_subset_visibility(benchmark_type):
|
| 566 |
-
return gr.update(visible=(benchmark_type == "longbench"))
|
| 567 |
-
|
| 568 |
-
benchmark_dropdown.change(
|
| 569 |
-
update_subset_visibility,
|
| 570 |
-
inputs=[benchmark_dropdown],
|
| 571 |
-
outputs=[dataset_subset]
|
| 572 |
-
)
|
| 573 |
-
|
| 574 |
-
with gr.Column():
|
| 575 |
-
gr.Markdown("### Evaluation Parameters")
|
| 576 |
-
eval_samples = gr.Slider(1, 100, value=20, step=1, label="Evaluation Samples")
|
| 577 |
-
n_seeds = gr.Slider(1, 5, value=3, step=1, label="Random Seeds")
|
| 578 |
-
seq_length = gr.Slider(128, 1024, value=512, step=128,
|
| 579 |
-
label="Sequence Length (max 1024 for GPT-2)")
|
| 580 |
-
generation_length = gr.Slider(16, 128, value=64, step=16, label="Generation Length")
|
| 581 |
-
|
| 582 |
-
with gr.Row():
|
| 583 |
-
with gr.Column():
|
| 584 |
-
gr.Markdown("### SPG Core Parameters")
|
| 585 |
-
base_decay = gr.Slider(0.8, 0.99, value=0.95, step=0.01, label="Base Decay Rate")
|
| 586 |
-
sink_tokens = gr.Slider(0, 8, value=2, step=1, label="Sink Tokens")
|
| 587 |
-
recent_window = gr.Slider(8, 64, value=32, step=8, label="Recent Window")
|
| 588 |
-
|
| 589 |
-
with gr.Column():
|
| 590 |
-
gr.Markdown("### Adaptive SPG")
|
| 591 |
-
enable_adaptive = gr.Checkbox(value=False, label="Enable Adaptive")
|
| 592 |
-
target_ppl_delta = gr.Slider(0.5, 5.0, value=1.8, step=0.1,
|
| 593 |
-
label="Target Perplexity Delta")
|
| 594 |
-
|
| 595 |
-
with gr.Row():
|
| 596 |
-
with gr.Column():
|
| 597 |
-
gr.Markdown("### Progressive Compression")
|
| 598 |
-
enable_progressive = gr.Checkbox(value=False, label="Enable Progressive")
|
| 599 |
-
quality_threshold = gr.Slider(0.005, 0.05, value=0.01, step=0.005,
|
| 600 |
-
label="Quality Threshold")
|
| 601 |
-
initial_compression = gr.Slider(10.0, 200.0, value=50.0, step=5.0,
|
| 602 |
-
label="Initial Compression Ratio")
|
| 603 |
-
max_compression = gr.Slider(100.0, 500.0, value=400.0, step=25.0,
|
| 604 |
-
label="Max Compression Ratio")
|
| 605 |
-
|
| 606 |
-
with gr.Column():
|
| 607 |
-
gr.Markdown("### Enhanced SPG (RocketKV-style)")
|
| 608 |
-
sequence_comp_ratio = gr.Slider(0.0001, 0.001, value=0.0001, step=0.00005,
|
| 609 |
-
label="Sequence Compression Ratio")
|
| 610 |
-
head_comp_ratio = gr.Slider(0.0001, 0.001, value=0.0001, step=0.00005,
|
| 611 |
-
label="Head Compression Ratio")
|
| 612 |
-
head_retention = gr.Dropdown(
|
| 613 |
-
choices=["conservative", "aggressive"],
|
| 614 |
-
value="aggressive",
|
| 615 |
-
label="Head Retention Mode"
|
| 616 |
-
)
|
| 617 |
-
magnitude_mode = gr.Dropdown(
|
| 618 |
-
choices=["conservative", "aggressive", "extreme"],
|
| 619 |
-
value="aggressive", # Changed from "extreme" for stability
|
| 620 |
-
label="Magnitude Threshold Mode"
|
| 621 |
-
)
|
| 622 |
-
|
| 623 |
-
with gr.Row():
|
| 624 |
-
with gr.Column():
|
| 625 |
-
gr.Markdown("### Stability Parameters")
|
| 626 |
-
min_tokens_stability = gr.Slider(4, 16, value=8, step=1,
|
| 627 |
-
label="Min Tokens for Stability")
|
| 628 |
-
recent_boost = gr.Slider(0.0, 0.5, value=0.1, step=0.05,
|
| 629 |
-
label="Recent Boost Factor")
|
| 630 |
-
|
| 631 |
-
with gr.Column():
|
| 632 |
-
gr.Markdown("### System Settings")
|
| 633 |
-
fail_on_cpu = gr.Checkbox(value=False, label="Fail on CPU Fallback")
|
| 634 |
-
|
| 635 |
-
with gr.Tab("Run Benchmark"):
|
| 636 |
-
run_button = gr.Button("🚀 Run Benchmark", variant="primary")
|
| 637 |
-
|
| 638 |
-
with gr.Row():
|
| 639 |
-
progress_text = gr.Textbox(label="Progress", lines=10)
|
| 640 |
-
|
| 641 |
-
with gr.Row():
|
| 642 |
-
plot_gallery = gr.Gallery(label="Results Visualization", columns=2, height="auto")
|
| 643 |
-
|
| 644 |
-
with gr.Row():
|
| 645 |
-
summary_output = gr.Textbox(label="Summary", lines=20)
|
| 646 |
-
verification_output = gr.Textbox(label="Proof Verification", lines=5)
|
| 647 |
-
|
| 648 |
-
with gr.Tab("Export Results"):
|
| 649 |
-
gr.Markdown("### Export Options")
|
| 650 |
-
|
| 651 |
-
export_format = gr.Radio(
|
| 652 |
-
choices=["JSON", "CSV", "LaTeX"],
|
| 653 |
-
value="JSON",
|
| 654 |
-
label="Export Format"
|
| 655 |
-
)
|
| 656 |
-
|
| 657 |
-
export_button = gr.Button("📥 Export Results")
|
| 658 |
-
export_status = gr.Textbox(label="Export Status")
|
| 659 |
-
|
| 660 |
-
export_button.click(
|
| 661 |
-
export_results,
|
| 662 |
-
inputs=[export_format],
|
| 663 |
-
outputs=[export_status]
|
| 664 |
-
)
|
| 665 |
-
|
| 666 |
-
# Connect the run button
|
| 667 |
-
run_button.click(
|
| 668 |
-
run_benchmark,
|
| 669 |
-
inputs=[
|
| 670 |
-
model_dropdown, compression_dropdown, benchmark_dropdown, dataset_subset,
|
| 671 |
-
eval_samples, n_seeds, seq_length, generation_length,
|
| 672 |
-
base_decay, sink_tokens, recent_window,
|
| 673 |
-
enable_adaptive, target_ppl_delta,
|
| 674 |
-
enable_progressive, quality_threshold,
|
| 675 |
-
initial_compression, max_compression,
|
| 676 |
-
sequence_comp_ratio, head_comp_ratio,
|
| 677 |
-
head_retention, magnitude_mode,
|
| 678 |
-
min_tokens_stability, recent_boost,
|
| 679 |
-
fail_on_cpu
|
| 680 |
-
],
|
| 681 |
-
outputs=[plot_gallery, summary_output, verification_output]
|
| 682 |
-
)
|
| 683 |
-
|
| 684 |
-
return demo
|
| 685 |
-
|
| 686 |
-
|
| 687 |
-
if __name__ == "__main__":
|
| 688 |
-
# Set up logging
|
| 689 |
-
logging.basicConfig(
|
| 690 |
-
level=logging.INFO,
|
| 691 |
-
format='%(asctime)s - %(levelname)s - %(message)s'
|
| 692 |
-
)
|
| 693 |
-
|
| 694 |
-
# Create and launch the interface
|
| 695 |
-
demo = create_interface()
|
| 696 |
-
demo.launch(
|
| 697 |
-
server_name="0.0.0.0",
|
| 698 |
-
server_port=7860,
|
| 699 |
-
share=False,
|
| 700 |
-
show_error=True
|
| 701 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|