Spaces:
Sleeping
Sleeping
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool | |
import datetime | |
import requests | |
import pytz | |
import yaml | |
import asyncio | |
import nest_asyncio | |
#import matplotlib | |
from playwright.async_api import async_playwright | |
from PIL import Image | |
import numpy as np | |
import subprocess | |
import json | |
from rapidfuzz import process | |
import gradio as gr | |
from tools.final_answer import FinalAnswerTool | |
from Gradio_UI import GradioUI | |
nest_asyncio.apply() # Ensure async works in a Jupyter/Colab/HF Spaces environment | |
subprocess.run(["apt-get", "update"]) | |
subprocess.run(["apt-get", "install", "-y", "libnss3", "libatk1.0-0", "libatk-bridge2.0-0", "libxcomposite1", | |
"libxdamage1", "libcups2"]) | |
subprocess.run(["playwright", "install", "chromium"]) | |
# Below is an example of a tool that does nothing. Amaze us with your creativity ! | |
def my_custom_tool(arg1:str, arg2:int)-> str: #it's import to specify the return type | |
#Keep this format for the description / args / args description but feel free to modify the tool | |
"""A tool that does nothing yet | |
Args: | |
arg1: the first argument | |
arg2: the second argument | |
""" | |
return "What magic will you build ?" | |
def load_image_sources(): | |
with open("expanded.json", "r") as file: | |
# with open("image_sources.json", "r") as file: | |
return json.load(file) | |
image_sources = load_image_sources() | |
def get_image_url(image_type: str, image_sources: dict): | |
"""Finds the best match for the given image type in a nested JSON structure.""" | |
choices = list(image_sources.keys()) # Get all available keys | |
# Find the best match using `rapidfuzz` | |
best_match, score, *_ = process.extractOne(image_type, choices, score_cutoff=60) | |
if best_match: | |
# Access the image_sources dictionary directly using the best_match string as the key | |
print(f"Best match found: {best_match}") # Removed category access as it's not needed | |
return image_sources[best_match] # Returns {'url', 'width', 'height', etc.} | |
else: | |
# Default return if no good match is found | |
return { | |
"url": "https://editor.p5js.org/kfahn/full/2XD5Y8MiV", | |
"width": 800, | |
"height": 800 | |
} | |
# def get_image_url(image_type: str): | |
# """Finds the best match for the given image type using fuzzy matching.""" | |
# choices = list(image_sources.keys()) # Get all available keys | |
# best_match, score, *rest = process.extractOne(image_type, choices) | |
# if score > 90: # Set a threshold to ensure a reasonable match | |
# print(best_match) | |
# return image_sources[best_match] | |
# else: | |
# #return None # No good match found | |
# return "https://editor.p5js.org/kfahn/full/2XD5Y8MiV" | |
# async def capture_screenshot(image_type: str): | |
# """Launches Playwright and uses user input, if any, to captures a screenshot of an image from p5.js.""" | |
# print("Launching Playwright...") | |
# async with async_playwright() as p: | |
# browser = await p.chromium.launch(headless=True) | |
# page = await browser.new_page() | |
# #url = "https://openprocessing.org/sketch/2539973" | |
# url = "https://editor.p5js.org/kfahn/full/2XD5Y8MiV" | |
# if image_type: | |
# image_url = get_image_url(image_type) | |
# else: | |
# image_url = url | |
# print(f"Opening image from p5 sketch: {image_url}") | |
# await page.goto(image_url, timeout=120000) # Wait for the image page to load | |
# print("Waiting for image element...") | |
# # await page.wait_for_selector("img", timeout=120000) # Wait for the <img> to be visible | |
# await page.wait_for_timeout(5000) # Allow sketch to fully render | |
# print("Capturing screenshot...") | |
# await page.set_viewport_size({"width": 800, "height": 800}) | |
# await page.locator("iframe").screenshot(path="img.png") | |
# await browser.close() | |
# print("Screenshot saved!") | |
async def capture_screenshot(image_type: str): | |
"""Captures a screenshot of an image from p5.js.""" | |
print("Launching Playwright...") | |
async with async_playwright() as p: | |
browser = await p.chromium.launch(headless=True) | |
page = await browser.new_page() | |
# Load image sources from JSON | |
image_sources = load_image_sources() | |
image_data = get_image_url(image_type, image_sources) | |
image_url = image_data["url"] | |
width = image_data["width"] | |
height = image_data["height"] | |
print(f"Opening image: {image_url}") | |
await page.goto(image_url, timeout=120000) # Load page | |
print("Waiting for render...") | |
await page.wait_for_timeout(5000) | |
print(f"Setting viewport to {width}x{height}...") | |
await page.set_viewport_size({"width": width, "height": height}) | |
print("Capturing screenshot...") | |
await page.locator("iframe").screenshot(path="img.png") | |
await browser.close() | |
print("Screenshot saved!") | |
def grab_image(image_type: str) -> Image: | |
""" | |
Fetches an user specified image or generative object from a p5.js sketch. | |
This tool can be used to show a user what the generative art looks like. | |
This function sends uses Playwright to launch a headless server and grab a screenshot of a p5.js sketch. | |
Args: | |
image_type: The art type or generative object. | |
Returns: | |
image: The screen shot of the p5.js sketch as an image. | |
""" | |
print("Running async Playwright screenshot...") | |
loop = asyncio.new_event_loop() # Create a new event loop (Fixes issues on HF Spaces) | |
asyncio.set_event_loop(loop) | |
loop.run_until_complete(capture_screenshot(image_type)) | |
print("Loading image for Gradio...") | |
img = Image.open("img.png") | |
return img | |
def get_joke() -> str: | |
""" | |
Fetches a random joke from the JokeAPI. | |
This function sends a GET request to the JokeAPI to retrieve a random joke. | |
It handles both single jokes and two-part jokes (setup and delivery). | |
If the request fails or the response does not contain a joke, an error message is returned. | |
Returns: | |
str: The joke as a string, or an error message if the joke could not be fetched. | |
""" | |
url = "https://v2.jokeapi.dev/joke/Any?type=single" | |
try: | |
response = requests.get(url) | |
response.raise_for_status() | |
data = response.json() | |
if "joke" in data: | |
return data["joke"] | |
elif "setup" in data and "delivery" in data: | |
return f"{data['setup']} - {data['delivery']}" | |
else: | |
return "Error: Unable to fetch joke." | |
except requests.exceptions.RequestException as e: | |
return f"Error fetching joke: {str(e)}" | |
#https://github.com/huggingface/smolagents/blob/main/examples/multiple_tools.py | |
def get_current_time_in_timezone(timezone: str) -> str: | |
"""A tool that fetches the current local time in a specified timezone. | |
Args: | |
timezone: A string representing a valid timezone (e.g., 'America/New_York'). | |
""" | |
try: | |
# Create timezone object | |
tz = pytz.timezone(timezone) | |
# Get current time in that timezone | |
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S") | |
return f"The current local time in {timezone} is: {local_time}" | |
except Exception as e: | |
return f"Error fetching time for timezone '{timezone}': {str(e)}" | |
final_answer = FinalAnswerTool() | |
# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder: | |
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' | |
model = HfApiModel( | |
max_tokens=2096, | |
temperature=0.5, | |
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded | |
custom_role_conversions=None, | |
) | |
# Import tool from Hub | |
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True) | |
with open("prompts.yaml", 'r') as stream: | |
prompt_templates = yaml.safe_load(stream) | |
agent = CodeAgent( | |
model=model, | |
tools=[final_answer, get_joke, grab_image], ## add your tools here (don't remove final answer) | |
max_steps=6, | |
verbosity_level=1, | |
grammar=None, | |
planning_interval=None, | |
name=None, | |
description=None, | |
prompt_templates=prompt_templates | |
) | |
GradioUI(agent).launch() |