startup-chatbot / app.py
key-life's picture
Create app.py
97e8ea6 verified
from fastapi import FastAPI
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
import faiss
import torch
from sentence_transformers import SentenceTransformer
app = FastAPI()
# Load models
embed_model = SentenceTransformer('all-MiniLM-L6-v2')
tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-small")
model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-small")
# Sample documents
documents = [
"Startup India provides funding and tax benefits for new startups in India.",
"Angel investors are individuals who invest in early-stage startups in exchange for equity.",
"A pitch deck is a presentation that startups use to attract investors.",
"The government offers startup grants through various schemes.",
"Networking events connect entrepreneurs with investors and mentors."
]
# Convert documents to embeddings and store in FAISS
doc_vectors = embed_model.encode(documents, convert_to_numpy=True)
dimension = doc_vectors.shape[1]
index = faiss.IndexFlatL2(dimension)
index.add(doc_vectors)
def retrieve_docs(query, top_k=2):
query_vector = embed_model.encode([query], convert_to_numpy=True)
distances, indices = index.search(query_vector, top_k)
return [documents[i] for i in indices[0]]
def generate_response(query):
retrieved_docs = retrieve_docs(query)
context = " ".join(retrieved_docs)
prompt = f"Context: {context}\nQuestion: {query}\nAnswer:"
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True)
outputs = model.generate(**inputs, max_new_tokens=100)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
@app.get("/chat")
def chat(query: str):
return {"response": generate_response(query)}