Spaces:
Sleeping
Sleeping
Kevin Wu
commited on
Commit
·
95174f7
1
Parent(s):
854997c
Initial
Browse files- app.py +179 -156
- requirements.txt +1 -1
app.py
CHANGED
@@ -4,184 +4,203 @@ import os
|
|
4 |
import time
|
5 |
import gradio as gr
|
6 |
from openai import OpenAI
|
7 |
-
|
8 |
import xml.etree.ElementTree as ET
|
9 |
import re
|
10 |
import pandas as pd
|
11 |
-
|
12 |
import prompts
|
|
|
13 |
|
14 |
client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
|
15 |
|
16 |
model_name = "gpt-4o-2024-08-06"
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
24 |
|
25 |
def parse_xml_response(xml_string: str) -> pd.DataFrame:
|
26 |
"""
|
27 |
Parse the XML response from the model and extract all fields into a dictionary,
|
28 |
then convert it to a pandas DataFrame with a nested index.
|
29 |
"""
|
30 |
-
# Extract only the XML content between the first and last tags
|
31 |
-
xml_content = re.search(r'<.*?>.*</.*?>', xml_string, re.DOTALL)
|
32 |
-
if xml_content:
|
33 |
-
xml_string = xml_content.group(0)
|
34 |
-
else:
|
35 |
-
print("No valid XML content found.")
|
36 |
-
return pd.DataFrame()
|
37 |
-
|
38 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
root = ET.fromstring(xml_string)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
except ET.ParseError as e:
|
41 |
-
print(f"
|
|
|
|
|
|
|
|
|
|
|
42 |
return pd.DataFrame()
|
43 |
-
|
44 |
-
result = {}
|
45 |
-
|
46 |
-
for element in root:
|
47 |
-
tag = element.tag
|
48 |
-
if tag in ['patient_name', 'date_of_birth', 'sex', 'weight', 'date_of_death']:
|
49 |
-
result[tag] = {
|
50 |
-
'reasoning': element.find('reasoning').text.strip() if element.find('reasoning') is not None else None,
|
51 |
-
**{child.tag: child.text.strip() if child.text else None
|
52 |
-
for child in element if child.tag != 'reasoning'}
|
53 |
-
}
|
54 |
-
elif tag in ['traditional_chemo', 'other_cancer_treatments', 'other_conmeds']:
|
55 |
-
if tag not in result:
|
56 |
-
result[tag] = []
|
57 |
-
reasoning = element.find('reasoning')
|
58 |
-
for item in element:
|
59 |
-
if item.tag in ['drug', 'treatment', 'medication']:
|
60 |
-
date_element = element.find('date')
|
61 |
-
result[tag].append({
|
62 |
-
'reasoning': reasoning.text.strip() if reasoning is not None else None,
|
63 |
-
'name': item.text.strip() if item.text else None,
|
64 |
-
'date': date_element.text.strip() if date_element is not None and date_element.text else None
|
65 |
-
})
|
66 |
-
elif tag in ['surgery', 'surgery_outcome', 'metastasis_at_time_of_diagnosis']:
|
67 |
-
result[tag] = {
|
68 |
-
'reasoning': element.find('reasoning').text.strip() if element.find('reasoning') is not None else None,
|
69 |
-
**{child.tag: child.text.strip() if child.text else None
|
70 |
-
for child in element if child.tag != 'reasoning'}
|
71 |
-
}
|
72 |
-
elif tag == 'compounding_pharmacy':
|
73 |
-
result[tag] = {
|
74 |
-
'reasoning': element.find('reasoning').text.strip() if element.find('reasoning') is not None else None,
|
75 |
-
'pharmacy': element.find('pharmacy').text.strip() if element.find('pharmacy') is not None else None
|
76 |
-
}
|
77 |
-
elif tag == 'adverse_effects':
|
78 |
-
if tag not in result:
|
79 |
-
result[tag] = []
|
80 |
-
effect = {
|
81 |
-
'reasoning': element.find('reasoning').text.strip() if element.find('reasoning') is not None else None
|
82 |
-
}
|
83 |
-
for child in element:
|
84 |
-
if child.tag != 'reasoning':
|
85 |
-
effect[child.tag] = child.text.strip() if child.text else None
|
86 |
-
if effect:
|
87 |
-
result[tag].append(effect)
|
88 |
-
|
89 |
-
# Convert to nested DataFrame
|
90 |
-
df_data = {}
|
91 |
-
for key, value in result.items():
|
92 |
-
if isinstance(value, dict):
|
93 |
-
for sub_key, sub_value in value.items():
|
94 |
-
df_data[(key, '1', sub_key)] = [sub_value]
|
95 |
-
elif isinstance(value, list):
|
96 |
-
for i, item in enumerate(value):
|
97 |
-
for sub_key, sub_value in item.items():
|
98 |
-
df_data[(key, f"{i+1}", sub_key)] = [sub_value]
|
99 |
-
else:
|
100 |
-
df_data[(key, '1', '')] = [value]
|
101 |
-
|
102 |
-
# Create multi-index DataFrame
|
103 |
-
df = pd.DataFrame(df_data)
|
104 |
-
df.columns = pd.MultiIndex.from_tuples(df.columns)
|
105 |
-
|
106 |
-
return df
|
107 |
|
108 |
def get_response(prompt, file_id, assistant_id):
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
def process(file_content):
|
134 |
-
|
135 |
-
os.
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
|
186 |
def gradio_interface():
|
187 |
upload_component = gr.File(label="Upload PDF", type="binary")
|
@@ -198,4 +217,8 @@ def gradio_interface():
|
|
198 |
demo.launch()
|
199 |
|
200 |
if __name__ == "__main__":
|
201 |
-
|
|
|
|
|
|
|
|
|
|
4 |
import time
|
5 |
import gradio as gr
|
6 |
from openai import OpenAI
|
|
|
7 |
import xml.etree.ElementTree as ET
|
8 |
import re
|
9 |
import pandas as pd
|
|
|
10 |
import prompts
|
11 |
+
import traceback
|
12 |
|
13 |
client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
|
14 |
|
15 |
model_name = "gpt-4o-2024-08-06"
|
16 |
|
17 |
+
try:
|
18 |
+
demo = client.beta.assistants.create(
|
19 |
+
name="Information Extractor",
|
20 |
+
instructions="Extract information from this note.",
|
21 |
+
model=model_name,
|
22 |
+
tools=[{"type": "file_search"}],
|
23 |
+
)
|
24 |
+
except Exception as e:
|
25 |
+
print(f"Error creating assistant: {str(e)}")
|
26 |
+
raise
|
27 |
|
28 |
def parse_xml_response(xml_string: str) -> pd.DataFrame:
|
29 |
"""
|
30 |
Parse the XML response from the model and extract all fields into a dictionary,
|
31 |
then convert it to a pandas DataFrame with a nested index.
|
32 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
try:
|
34 |
+
# Extract only the XML content between the first and last tags
|
35 |
+
xml_content = re.search(r'<.*?>.*</.*?>', xml_string, re.DOTALL)
|
36 |
+
if xml_content:
|
37 |
+
xml_string = xml_content.group(0)
|
38 |
+
else:
|
39 |
+
print("No valid XML content found.")
|
40 |
+
return pd.DataFrame()
|
41 |
+
|
42 |
root = ET.fromstring(xml_string)
|
43 |
+
|
44 |
+
result = {}
|
45 |
+
|
46 |
+
for element in root:
|
47 |
+
tag = element.tag
|
48 |
+
if tag in ['patient_name', 'date_of_birth', 'sex', 'weight', 'date_of_death']:
|
49 |
+
result[tag] = {
|
50 |
+
'reasoning': element.find('reasoning').text.strip() if element.find('reasoning') is not None else None,
|
51 |
+
**{child.tag: child.text.strip() if child.text else None
|
52 |
+
for child in element if child.tag != 'reasoning'}
|
53 |
+
}
|
54 |
+
elif tag in ['traditional_chemo', 'other_cancer_treatments', 'other_conmeds']:
|
55 |
+
if tag not in result:
|
56 |
+
result[tag] = []
|
57 |
+
reasoning = element.find('reasoning')
|
58 |
+
for item in element:
|
59 |
+
if item.tag in ['drug', 'treatment', 'medication']:
|
60 |
+
date_element = element.find('date')
|
61 |
+
result[tag].append({
|
62 |
+
'reasoning': reasoning.text.strip() if reasoning is not None else None,
|
63 |
+
'name': item.text.strip() if item.text else None,
|
64 |
+
'date': date_element.text.strip() if date_element is not None and date_element.text else None
|
65 |
+
})
|
66 |
+
elif tag in ['surgery', 'surgery_outcome', 'metastasis_at_time_of_diagnosis']:
|
67 |
+
result[tag] = {
|
68 |
+
'reasoning': element.find('reasoning').text.strip() if element.find('reasoning') is not None else None,
|
69 |
+
**{child.tag: child.text.strip() if child.text else None
|
70 |
+
for child in element if child.tag != 'reasoning'}
|
71 |
+
}
|
72 |
+
elif tag == 'compounding_pharmacy':
|
73 |
+
result[tag] = {
|
74 |
+
'reasoning': element.find('reasoning').text.strip() if element.find('reasoning') is not None else None,
|
75 |
+
'pharmacy': element.find('pharmacy').text.strip() if element.find('pharmacy') is not None else None
|
76 |
+
}
|
77 |
+
elif tag == 'adverse_effects':
|
78 |
+
if tag not in result:
|
79 |
+
result[tag] = []
|
80 |
+
effect = {
|
81 |
+
'reasoning': element.find('reasoning').text.strip() if element.find('reasoning') is not None else None
|
82 |
+
}
|
83 |
+
for child in element:
|
84 |
+
if child.tag != 'reasoning':
|
85 |
+
effect[child.tag] = child.text.strip() if child.text else None
|
86 |
+
if effect:
|
87 |
+
result[tag].append(effect)
|
88 |
+
|
89 |
+
# Convert to nested DataFrame
|
90 |
+
df_data = {}
|
91 |
+
for key, value in result.items():
|
92 |
+
if isinstance(value, dict):
|
93 |
+
for sub_key, sub_value in value.items():
|
94 |
+
df_data[(key, '1', sub_key)] = [sub_value]
|
95 |
+
elif isinstance(value, list):
|
96 |
+
for i, item in enumerate(value):
|
97 |
+
for sub_key, sub_value in item.items():
|
98 |
+
df_data[(key, f"{i+1}", sub_key)] = [sub_value]
|
99 |
+
else:
|
100 |
+
df_data[(key, '1', '')] = [value]
|
101 |
+
|
102 |
+
# Create multi-index DataFrame
|
103 |
+
df = pd.DataFrame(df_data)
|
104 |
+
df.columns = pd.MultiIndex.from_tuples(df.columns)
|
105 |
+
|
106 |
+
return df
|
107 |
except ET.ParseError as e:
|
108 |
+
print(f"XML parsing error: {str(e)}")
|
109 |
+
print(f"Problematic XML content: {xml_string[:500]}...") # Print first 500 chars of XML
|
110 |
+
return pd.DataFrame()
|
111 |
+
except Exception as e:
|
112 |
+
print(f"Error in parse_xml_response: {str(e)}")
|
113 |
+
print(f"Traceback: {traceback.format_exc()}")
|
114 |
return pd.DataFrame()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
116 |
def get_response(prompt, file_id, assistant_id):
|
117 |
+
try:
|
118 |
+
thread = client.beta.threads.create(
|
119 |
+
messages=[
|
120 |
+
{
|
121 |
+
"role": "user",
|
122 |
+
"content": prompts.info_prompt,
|
123 |
+
"attachments": [
|
124 |
+
{"file_id": file_id, "tools": [{"type": "file_search"}]}
|
125 |
+
],
|
126 |
+
}
|
127 |
+
]
|
128 |
+
)
|
129 |
+
run = client.beta.threads.runs.create_and_poll(
|
130 |
+
thread_id=thread.id, assistant_id=assistant_id
|
131 |
+
)
|
132 |
+
messages = list(
|
133 |
+
client.beta.threads.messages.list(thread_id=thread.id, run_id=run.id)
|
134 |
+
)
|
135 |
+
assert len(messages) == 1, f"Expected 1 message, got {len(messages)}"
|
136 |
+
message_content = messages[0].content[0].text
|
137 |
+
annotations = message_content.annotations
|
138 |
+
for index, annotation in enumerate(annotations):
|
139 |
+
message_content.value = message_content.value.replace(annotation.text, f"")
|
140 |
+
return message_content.value
|
141 |
+
except Exception as e:
|
142 |
+
print(f"Error in get_response: {str(e)}")
|
143 |
+
print(f"Traceback: {traceback.format_exc()}")
|
144 |
+
raise
|
145 |
|
146 |
def process(file_content):
|
147 |
+
try:
|
148 |
+
if not os.path.exists("cache"):
|
149 |
+
os.makedirs("cache")
|
150 |
+
file_name = f"cache/{time.time()}.pdf"
|
151 |
+
with open(file_name, "wb") as f:
|
152 |
+
f.write(file_content)
|
153 |
+
|
154 |
+
message_file = client.files.create(file=open(file_name, "rb"), purpose="assistants")
|
155 |
+
|
156 |
+
response = get_response(prompts.info_prompt, message_file.id, demo.id)
|
157 |
+
df = parse_xml_response(response)
|
158 |
+
|
159 |
+
if df.empty:
|
160 |
+
return "<p>No valid information could be extracted from the provided file.</p>"
|
161 |
+
|
162 |
+
# Transpose the DataFrame
|
163 |
+
df_transposed = df.T.reset_index()
|
164 |
+
df_transposed.columns = ['Category', 'Index', 'Field', 'Value']
|
165 |
+
df_transposed = df_transposed.sort_values(['Category', 'Index', 'Field'])
|
166 |
+
|
167 |
+
# Convert to HTML with some basic styling
|
168 |
+
html = df_transposed.to_html(index=False, classes='table table-striped table-bordered', escape=False)
|
169 |
+
|
170 |
+
# Add some custom CSS for better readability
|
171 |
+
html = f"""
|
172 |
+
<style>
|
173 |
+
.table {{
|
174 |
+
width: 100%;
|
175 |
+
max-width: 100%;
|
176 |
+
margin-bottom: 1rem;
|
177 |
+
background-color: transparent;
|
178 |
+
}}
|
179 |
+
.table td, .table th {{
|
180 |
+
padding: .75rem;
|
181 |
+
vertical-align: top;
|
182 |
+
border-top: 1px solid #dee2e6;
|
183 |
+
}}
|
184 |
+
.table thead th {{
|
185 |
+
vertical-align: bottom;
|
186 |
+
border-bottom: 2px solid #dee2e6;
|
187 |
+
}}
|
188 |
+
.table tbody + tbody {{
|
189 |
+
border-top: 2px solid #dee2e6;
|
190 |
+
}}
|
191 |
+
.table-striped tbody tr:nth-of-type(odd) {{
|
192 |
+
background-color: rgba(0,0,0,.05);
|
193 |
+
}}
|
194 |
+
</style>
|
195 |
+
{html}
|
196 |
+
"""
|
197 |
+
|
198 |
+
return html
|
199 |
+
except Exception as e:
|
200 |
+
error_message = f"An error occurred while processing the file: {str(e)}"
|
201 |
+
print(error_message)
|
202 |
+
print(f"Traceback: {traceback.format_exc()}")
|
203 |
+
return f"<p>{error_message}</p>"
|
204 |
|
205 |
def gradio_interface():
|
206 |
upload_component = gr.File(label="Upload PDF", type="binary")
|
|
|
217 |
demo.launch()
|
218 |
|
219 |
if __name__ == "__main__":
|
220 |
+
try:
|
221 |
+
gradio_interface()
|
222 |
+
except Exception as e:
|
223 |
+
print(f"Error launching Gradio interface: {str(e)}")
|
224 |
+
print(f"Traceback: {traceback.format_exc()}")
|
requirements.txt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
-
gradio==
|
2 |
openai==1.51.2
|
3 |
pandas
|
|
|
1 |
+
gradio==4.29.0
|
2 |
openai==1.51.2
|
3 |
pandas
|