Spaces:
Runtime error
Runtime error
# Agung Wijaya - WebUI 2023 - Gradio | |
# file app.py | |
# Import | |
import os | |
import psutil | |
import shutil | |
import numpy as np | |
import gradio as gr | |
import subprocess | |
from pathlib import Path | |
import ffmpeg | |
import json | |
import re | |
import time | |
import random | |
import torch | |
import librosa | |
import util | |
from config import device | |
from infer_pack.models import ( | |
SynthesizerTrnMs256NSFsid, | |
SynthesizerTrnMs256NSFsid_nono | |
) | |
from vc_infer_pipeline import VC | |
from typing import Union | |
from os import path, getenv | |
from datetime import datetime | |
from scipy.io.wavfile import write | |
# Reference: https://huggingface.co/spaces/zomehwh/rvc-models/blob/main/app.py#L21 # noqa | |
in_hf_space = getenv('SYSTEM') == 'spaces' | |
# Set High Quality (.wav) or not (.mp3) | |
high_quality = True | |
# Read config.json | |
config_json = json.loads(open("config.json").read()) | |
# Load hubert model | |
hubert_model = util.load_hubert_model(device, 'hubert_base.pt') | |
hubert_model.eval() | |
# Load models | |
loaded_models = [] | |
for model_name in config_json.get('models'): | |
print(f'Loading model: {model_name}') | |
# Load model info | |
model_info = json.load( | |
open(path.join('model', model_name, 'config.json'), 'r') | |
) | |
# Load RVC checkpoint | |
cpt = torch.load( | |
path.join('model', model_name, model_info['model']), | |
map_location='cpu' | |
) | |
tgt_sr = cpt['config'][-1] | |
cpt['config'][-3] = cpt['weight']['emb_g.weight'].shape[0] # n_spk | |
if_f0 = cpt.get('f0', 1) | |
net_g: Union[SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono] | |
if if_f0 == 1: | |
net_g = SynthesizerTrnMs256NSFsid( | |
*cpt['config'], | |
is_half=util.is_half(device) | |
) | |
else: | |
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt['config']) | |
del net_g.enc_q | |
# According to original code, this thing seems necessary. | |
print(net_g.load_state_dict(cpt['weight'], strict=False)) | |
net_g.eval().to(device) | |
net_g = net_g.half() if util.is_half(device) else net_g.float() | |
vc = VC(tgt_sr, device, util.is_half(device)) | |
loaded_models.append(dict( | |
name=model_name, | |
metadata=model_info, | |
vc=vc, | |
net_g=net_g, | |
if_f0=if_f0, | |
target_sr=tgt_sr | |
)) | |
print(f'Models loaded: {len(loaded_models)}') | |
# Command line test | |
def command_line_test(): | |
command = "df -h /home/user/app" | |
process = subprocess.run(command.split(), stdout=subprocess.PIPE) | |
result = process.stdout.decode() | |
return gr.HTML(value=result) | |
# Check junk files && delete | |
def check_junk(): | |
# Find and delete all files after 10 minutes | |
os.system("find ./ytaudio/* -mmin +10 -delete") | |
os.system("find ./output/* -mmin +10 -delete") | |
os.system("find /tmp/gradio/* -mmin +5 -delete") | |
os.system("find /tmp/*.wav -mmin +5 -delete") | |
print("Junk files has been deleted!") | |
# Function Information | |
def information(): | |
stats = os.system("du -s /content -h") | |
disk_usage = "Disk usage: "+str(stats) | |
info = "<p>"+disk_usage+"<br/></p>" | |
return gr.HTML(value=info) | |
# Function YouTube Downloader Audio | |
def youtube_downloader( | |
video_identifier, | |
start_time, | |
end_time, | |
output_filename="track.wav", | |
num_attempts=5, | |
url_base="", | |
quiet=False, | |
force=True, | |
): | |
output_path = Path(output_filename) | |
if output_path.exists(): | |
if not force: | |
return output_path | |
else: | |
output_path.unlink() | |
quiet = "--quiet --no-warnings" if quiet else "" | |
command = f""" | |
yt-dlp {quiet} -x --audio-format wav -f bestaudio -o "{output_filename}" --download-sections "*{start_time}-{end_time}" "{url_base}{video_identifier}" # noqa: E501 | |
""".strip() | |
attempts = 0 | |
while True: | |
try: | |
_ = subprocess.check_output(command, shell=True, stderr=subprocess.STDOUT) | |
except subprocess.CalledProcessError: | |
attempts += 1 | |
if attempts == num_attempts: | |
return None | |
else: | |
break | |
if output_path.exists(): | |
return output_path | |
else: | |
return None | |
# Function Audio Separated | |
def audio_separated(audio_input, progress=gr.Progress()): | |
# start progress | |
progress(progress=0, desc="Starting...") | |
time.sleep(1) | |
# check file input | |
if audio_input is None: | |
# show progress | |
for i in progress.tqdm(range(100), desc="Please wait..."): | |
time.sleep(0.1) | |
return (None, None, 'Please input audio.') | |
# create filename | |
filename = str(random.randint(10000,99999))+datetime.now().strftime("%d%m%Y%H%M%S") | |
# progress | |
progress(progress=0.10, desc="Please wait...") | |
# make dir output | |
os.makedirs("output", exist_ok=True) | |
# progress | |
progress(progress=0.20, desc="Please wait...") | |
# write | |
if high_quality: | |
write(filename+".wav", audio_input[0], audio_input[1]) | |
else: | |
write(filename+".mp3", audio_input[0], audio_input[1]) | |
# progress | |
progress(progress=0.50, desc="Please wait...") | |
# demucs process | |
if high_quality: | |
command_demucs = "python3 -m demucs --two-stems=vocals -d cpu "+filename+".wav -o output" | |
else: | |
command_demucs = "python3 -m demucs --two-stems=vocals --mp3 --mp3-bitrate 128 -d cpu "+filename+".mp3 -o output" | |
os.system(command_demucs) | |
# progress | |
progress(progress=0.70, desc="Please wait...") | |
# remove file audio | |
if high_quality: | |
command_delete = "rm -v ./"+filename+".wav" | |
else: | |
command_delete = "rm -v ./"+filename+".mp3" | |
os.system(command_delete) | |
# progress | |
progress(progress=0.80, desc="Please wait...") | |
# progress | |
for i in progress.tqdm(range(80,100), desc="Please wait..."): | |
time.sleep(0.1) | |
if high_quality: | |
return "./output/htdemucs/"+filename+"/vocals.wav","./output/htdemucs/"+filename+"/no_vocals.wav","Successfully..." | |
else: | |
return "./output/htdemucs/"+filename+"/vocals.mp3","./output/htdemucs/"+filename+"/no_vocals.mp3","Successfully..." | |
# Function Voice Changer | |
def voice_changer(audio_input, model_index, pitch_adjust, f0_method, feat_ratio, progress=gr.Progress()): | |
# start progress | |
progress(progress=0, desc="Starting...") | |
time.sleep(1) | |
# check file input | |
if audio_input is None: | |
# progress | |
for i in progress.tqdm(range(100), desc="Please wait..."): | |
time.sleep(0.1) | |
return (None, 'Please input audio.') | |
# check model input | |
if model_index is None: | |
# progress | |
for i in progress.tqdm(range(100), desc="Please wait..."): | |
time.sleep(0.1) | |
return (None, 'Please select a model.') | |
model = loaded_models[model_index] | |
# Reference: so-vits | |
(audio_samp, audio_npy) = audio_input | |
# progress | |
progress(progress=0.10, desc="Please wait...") | |
# https://huggingface.co/spaces/zomehwh/rvc-models/blob/main/app.py#L49 | |
if (audio_npy.shape[0] / audio_samp) > 60 and in_hf_space: | |
# progress | |
for i in progress.tqdm(range(10,100), desc="Please wait..."): | |
time.sleep(0.1) | |
return (None, 'Input audio is longer than 60 secs.') | |
# Bloody hell: https://stackoverflow.com/questions/26921836/ | |
if audio_npy.dtype != np.float32: # :thonk: | |
audio_npy = ( | |
audio_npy / np.iinfo(audio_npy.dtype).max | |
).astype(np.float32) | |
# progress | |
progress(progress=0.30, desc="Please wait...") | |
if len(audio_npy.shape) > 1: | |
audio_npy = librosa.to_mono(audio_npy.transpose(1, 0)) | |
# progress | |
progress(progress=0.40, desc="Please wait...") | |
if audio_samp != 16000: | |
audio_npy = librosa.resample( | |
audio_npy, | |
orig_sr=audio_samp, | |
target_sr=16000 | |
) | |
# progress | |
progress(progress=0.50, desc="Please wait...") | |
pitch_int = int(pitch_adjust) | |
times = [0, 0, 0] | |
output_audio = model['vc'].pipeline( | |
hubert_model, | |
model['net_g'], | |
model['metadata'].get('speaker_id', 0), | |
audio_npy, | |
times, | |
pitch_int, | |
f0_method, | |
path.join('model', model['name'], model['metadata']['feat_index']), | |
path.join('model', model['name'], model['metadata']['feat_npy']), | |
feat_ratio, | |
model['if_f0'] | |
) | |
# progress | |
progress(progress=0.80, desc="Please wait...") | |
print(f'npy: {times[0]}s, f0: {times[1]}s, infer: {times[2]}s') | |
# progress | |
for i in progress.tqdm(range(80,100), desc="Please wait..."): | |
time.sleep(0.1) | |
return ((model['target_sr'], output_audio), 'Successfully...') | |
# Function Text to Voice | |
def text_to_voice(text_input, model_index): | |
# start progress | |
progress(progress=0, desc="Starting...") | |
time.sleep(1) | |
# check text input | |
if text_input is None: | |
# progress | |
for i in progress.tqdm(range(2,100), desc="Please wait..."): | |
time.sleep(0.1) | |
return (None, 'Please write text.') | |
# check model input | |
if model_index is None: | |
# progress | |
for i in progress.tqdm(range(2,100), desc="Please wait..."): | |
time.sleep(0.1) | |
return (None, 'Please select a model.') | |
# progress | |
for i in progress.tqdm(range(2,100), desc="Please wait..."): | |
time.sleep(0.1) | |
return None, "Sorry, you can't use it yet because this program is being developed!" | |
# Themes | |
theme = gr.themes.Base() | |
# CSS | |
css = "footer {visibility: hidden}" | |
# Blocks | |
with gr.Blocks(theme=theme, css=css) as App: | |
# Header | |
gr.HTML("<center>" | |
"<h1>🥳🎶🎡 - AI歌手,RVC歌声转换</h1>" | |
"</center>") | |
gr.Markdown("### <center>🦄 - 能够自动提取视频中的声音,并去除背景音;Powered by [RVC-Project](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI)</center>") | |
gr.Markdown("### <center>更多精彩应用,敬请关注[滔滔AI](http://www.talktalkai.com);滔滔AI,为爱滔滔!💕</center>") | |
# Information | |
with gr.Accordion("Just information!"): | |
information() | |
# Tab YouTube Downloader | |
with gr.Tab("YouTube Video to Audio"): | |
with gr.Row(): | |
with gr.Column(): | |
ydl_url_input = gr.Textbox(label="Enter URL YouTube") | |
start = gr.Number(value=0, label="Start Time (seconds)") | |
end = gr.Number(value=15, label="End Time (seconds)") | |
ydl_url_submit = gr.Button("提取声音文件吧", variant="primary") | |
with gr.Column(): | |
ydl_audio_output = gr.Audio(label="Audio from YouTube") | |
with gr.Row(): | |
with gr.Column(): | |
as_audio_input = ydl_audio_output | |
as_audio_submit = gr.Button("去除背景音吧", variant="primary") | |
with gr.Column(): | |
as_audio_vocals = gr.Audio(label="Vocal only") | |
as_audio_no_vocals = gr.Audio(label="Music only") | |
as_audio_message = gr.Textbox(label="Message", visible=False) | |
ydl_url_submit.click(fn=youtube_downloader, inputs=[ydl_url_input, start, end], outputs=[ydl_audio_output]) | |
as_audio_submit.click(fn=audio_separated, inputs=[as_audio_input], outputs=[as_audio_vocals, as_audio_no_vocals, as_audio_message], show_progress=True, queue=True) | |
# Tab Voice Changer | |
with gr.Tab("Voice to AI Models"): | |
with gr.Row(): | |
with gr.Column(): | |
vc_audio_input = as_audio_vocals | |
vc_model_index = gr.Dropdown( | |
[ | |
'%s' % ( | |
m['metadata'].get('name') | |
) | |
for m in loaded_models | |
], | |
label='Models', | |
type='index' | |
) | |
vc_pitch_adjust = gr.Slider(label='Pitch', minimum=-24, maximum=24, step=1, value=0) | |
vc_f0_method = gr.Radio(label='F0 methods', choices=['pm', 'harvest'], value='pm', interactive=True) | |
vc_feat_ratio = gr.Slider(label='Feature ratio', minimum=0, maximum=1, step=0.1, value=0.6) | |
vc_audio_submit = gr.Button("进行歌声转换吧!", variant="primary") | |
with gr.Column(): | |
vc_audio_output = gr.Audio(label="Result audio", type="numpy") | |
vc_audio_message = gr.Textbox(label="Message") | |
vc_audio_submit.click(fn=voice_changer, inputs=[vc_audio_input, vc_model_index, vc_pitch_adjust, vc_f0_method, vc_feat_ratio], outputs=[vc_audio_output, vc_audio_message], show_progress=True, queue=True) | |
gr.Markdown("### <center>注意❗:请不要生成会对个人以及组织造成侵害的内容,此程序仅供科研、学习及个人娱乐使用。用户生成内容与程序开发者无关,请自觉合法合规使用,违反者一切后果自负。</center>") | |
gr.HTML(''' | |
<div class="footer"> | |
<p>🌊🏞️🎶 - 江水东流急,滔滔无尽声。 明·顾璘 | |
</p> | |
</div> | |
''') | |
# Check Junk | |
check_junk() | |
# Launch | |
App.queue(concurrency_count=1, max_size=20).launch(server_name="0.0.0.0", server_port=7860) | |
# Enjoy |