upload_models / app.py
kevinwang676's picture
Update app.py
a400a44 verified
import os, spaces
import gradio as gr
from huggingface_hub import HfApi, login
from datetime import datetime
@spaces.GPU
def upload_file_to_hf(file_path):
"""
将ZIP文件上传到TalkTalkAI/RVC Hugging Face模型仓库。
参数:
file_path (str): 要上传的ZIP文件路径
返回:
str: 成功或错误消息
"""
try:
# 从环境变量获取API令牌
api_token = os.environ.get("hf_token")
if not api_token:
return "错误: 未设置hf_token环境变量"
# 设置仓库ID
repo_id = "TalkTalkAI/RVC"
# Log in to Hugging Face
login(token=api_token, add_to_git_credential=False)
# Initialize the Hugging Face API
api = HfApi()
# 获取文件名并确保是ZIP文件
filename = os.path.basename(file_path)
if not filename.lower().endswith('.zip'):
return "错误: 仅支持ZIP格式文件"
# 在文件名中添加时间戳
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
base_name = os.path.splitext(filename)[0]
path_in_repo = f"{base_name}_{timestamp}.zip"
# 创建提交消息
commit_message = f"上传模型 {path_in_repo}"
# Upload the file
api.upload_file(
path_or_fileobj=file_path,
path_in_repo=path_in_repo,
repo_id=repo_id,
commit_message=commit_message
)
return f"https://huggingface.co/TalkTalkAI/RVC/resolve/main/{path_in_repo}"
except Exception as e:
return f"上传文件时出错: {str(e)}"
# Create the Gradio interface
with gr.Blocks(title="RVC模型上传") as demo:
gr.Markdown("# RVC模型上传工具")
gr.Markdown("""
将ZIP文件上传到书梦 AI 歌手模型仓库。
上传文件:
从本地上传您的 AI 歌手 ZIP 文件,其中包含 .pth 和 .index 模型文件
返回结果:
您的 AI 歌手 ZIP 文件下载链接,可直接在[书梦](https://www.doingdream.com/)使用
""")
with gr.Group():
file = gr.File(label="选择要上传的模型ZIP文件", file_types=[".zip"])
upload_button = gr.Button("上传模型", variant="primary")
result = gr.Textbox(label="模型下载链接", interactive=False, lines=4)
# 定义上传函数(适用于Gradio)
def gradio_upload(file):
if not file:
return "错误: 未选择任何文件"
if not file.name.lower().endswith('.zip'):
return "错误: 仅支持ZIP格式文件"
result = upload_file_to_hf(file.name)
# 检查是否上传成功并包含URL
if "成功上传" in result:
# 使结果更易于复制粘贴
gr.Info("上传成功!模型链接已生成")
return result
# Connect the button to the function
upload_button.click(
fn=gradio_upload,
inputs=[file],
outputs=result
)
# Launch the app
if __name__ == "__main__":
demo.launch()