Spaces:
Runtime error
Runtime error
Create app._use_multi_repo_ids_.py
Browse files- app._use_multi_repo_ids_.py +298 -0
app._use_multi_repo_ids_.py
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import subprocess
|
4 |
+
from pathlib import Path
|
5 |
+
|
6 |
+
import gradio as gr
|
7 |
+
import librosa
|
8 |
+
import numpy as np
|
9 |
+
import torch
|
10 |
+
from demucs.apply import apply_model
|
11 |
+
from demucs.pretrained import DEFAULT_MODEL, get_model
|
12 |
+
from huggingface_hub import hf_hub_download, list_repo_files
|
13 |
+
|
14 |
+
from so_vits_svc_fork.hparams import HParams
|
15 |
+
from so_vits_svc_fork.inference.core import Svc
|
16 |
+
|
17 |
+
|
18 |
+
###################################################################
|
19 |
+
# REPLACE THESE VALUES TO CHANGE THE MODEL REPO/CKPT NAME/SETTINGS
|
20 |
+
###################################################################
|
21 |
+
# The Hugging Face Hub repo ID - 在这里修改repo_id,可替换成任何已经训练好的模型!
|
22 |
+
repo_ids = ["nijisakai/sunyanzi", "kevinwang676/jay","nijisakai/Eric_Cartman"]
|
23 |
+
|
24 |
+
# If None, Uses latest ckpt in the repo
|
25 |
+
ckpt_name = None
|
26 |
+
|
27 |
+
# If None, Uses "kmeans.pt" if it exists in the repo
|
28 |
+
cluster_model_name = None
|
29 |
+
|
30 |
+
# Set the default f0 type to use - use the one it was trained on.
|
31 |
+
# The default for so-vits-svc-fork is "dio".
|
32 |
+
# Options: "crepe", "crepe-tiny", "parselmouth", "dio", "harvest"
|
33 |
+
default_f0_method = "crepe"
|
34 |
+
|
35 |
+
# The default ratio of cluster inference to SVC inference.
|
36 |
+
# If cluster_model_name is not found in the repo, this is set to 0.
|
37 |
+
default_cluster_infer_ratio = 0.5
|
38 |
+
|
39 |
+
# Limit on duration of audio at inference time. increase if you can
|
40 |
+
# In this parent app, we set the limit with an env var to 30 seconds
|
41 |
+
# If you didnt set env var + you go OOM try changing 9e9 to <=300ish
|
42 |
+
duration_limit = int(os.environ.get("MAX_DURATION_SECONDS", 9e9))
|
43 |
+
###################################################################
|
44 |
+
|
45 |
+
models = []
|
46 |
+
speakers = []
|
47 |
+
for repo_id in repo_ids:
|
48 |
+
# Figure out the latest generator by taking highest value one.
|
49 |
+
# Ex. if the repo has: G_0.pth, G_100.pth, G_200.pth, we'd use G_200.pth
|
50 |
+
if ckpt_name is None:
|
51 |
+
latest_id = sorted(
|
52 |
+
[
|
53 |
+
int(Path(x).stem.split("_")[1])
|
54 |
+
for x in list_repo_files(repo_id)
|
55 |
+
if x.startswith("G_") and x.endswith(".pth")
|
56 |
+
]
|
57 |
+
)[-1]
|
58 |
+
ckpt_name = f"G_{latest_id}.pth"
|
59 |
+
|
60 |
+
cluster_model_name = cluster_model_name or "kmeans.pt"
|
61 |
+
if cluster_model_name in list_repo_files(repo_id):
|
62 |
+
print(f"Found Cluster model - Downloading {cluster_model_name} from {repo_id}")
|
63 |
+
cluster_model_path = hf_hub_download(repo_id, cluster_model_name)
|
64 |
+
else:
|
65 |
+
print(f"Could not find {cluster_model_name} in {repo_id}. Using None")
|
66 |
+
cluster_model_path = None
|
67 |
+
default_cluster_infer_ratio = default_cluster_infer_ratio if cluster_model_path else 0
|
68 |
+
|
69 |
+
generator_path = hf_hub_download(repo_id, ckpt_name)
|
70 |
+
config_path = hf_hub_download(repo_id, "config.json")
|
71 |
+
hparams = HParams(**json.loads(Path(config_path).read_text()))
|
72 |
+
speaker = list(hparams.spk.keys())
|
73 |
+
speakers.extend(speaker)
|
74 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
75 |
+
model = Svc(net_g_path=generator_path, config_path=config_path, device=device, cluster_model_path=cluster_model_path)
|
76 |
+
models.append(model)
|
77 |
+
|
78 |
+
# Reset ckpt_name and cluster_model_name for the next iteration
|
79 |
+
ckpt_name = None
|
80 |
+
cluster_model_name = None
|
81 |
+
|
82 |
+
demucs_model = get_model(DEFAULT_MODEL)
|
83 |
+
|
84 |
+
def extract_vocal_demucs(model, filename, sr=44100, device=None, shifts=1, split=True, overlap=0.25, jobs=0):
|
85 |
+
wav, sr = librosa.load(filename, mono=False, sr=sr)
|
86 |
+
wav = torch.tensor(wav)
|
87 |
+
ref = wav.mean(0)
|
88 |
+
wav = (wav - ref.mean()) / ref.std()
|
89 |
+
sources = apply_model(
|
90 |
+
model, wav[None], device=device, shifts=shifts, split=split, overlap=overlap, progress=True, num_workers=jobs
|
91 |
+
)[0]
|
92 |
+
sources = sources * ref.std() + ref.mean()
|
93 |
+
vocal_wav = sources[-1]
|
94 |
+
vocal_wav = vocal_wav / max(1.01 * vocal_wav.abs().max(), 1)
|
95 |
+
vocal_wav = vocal_wav.numpy()
|
96 |
+
vocal_wav = librosa.to_mono(vocal_wav)
|
97 |
+
vocal_wav = vocal_wav.T
|
98 |
+
instrumental_wav = sources[:-1].sum(0).numpy().T
|
99 |
+
return vocal_wav, instrumental_wav
|
100 |
+
|
101 |
+
def download_youtube_clip(
|
102 |
+
video_identifier,
|
103 |
+
start_time,
|
104 |
+
end_time,
|
105 |
+
output_filename,
|
106 |
+
num_attempts=5,
|
107 |
+
url_base="https://www.youtube.com/watch?v=",
|
108 |
+
quiet=False,
|
109 |
+
force=False,
|
110 |
+
):
|
111 |
+
output_path = Path(output_filename)
|
112 |
+
if output_path.exists():
|
113 |
+
if not force:
|
114 |
+
return output_path
|
115 |
+
else:
|
116 |
+
output_path.unlink()
|
117 |
+
|
118 |
+
quiet = "--quiet --no-warnings" if quiet else ""
|
119 |
+
command = f"""
|
120 |
+
yt-dlp {quiet} -x --audio-format wav -f bestaudio -o "{output_filename}" --download-sections "*{start_time}-{end_time}" "{url_base}{video_identifier}" # noqa: E501
|
121 |
+
""".strip()
|
122 |
+
|
123 |
+
attempts = 0
|
124 |
+
while True:
|
125 |
+
try:
|
126 |
+
_ = subprocess.check_output(command, shell=True, stderr=subprocess.STDOUT)
|
127 |
+
except subprocess.CalledProcessError:
|
128 |
+
attempts += 1
|
129 |
+
if attempts == num_attempts:
|
130 |
+
return None
|
131 |
+
else:
|
132 |
+
break
|
133 |
+
|
134 |
+
if output_path.exists():
|
135 |
+
return output_path
|
136 |
+
else:
|
137 |
+
return None
|
138 |
+
|
139 |
+
def predict(
|
140 |
+
speaker,
|
141 |
+
audio,
|
142 |
+
transpose: int = 0,
|
143 |
+
auto_predict_f0: bool = False,
|
144 |
+
cluster_infer_ratio: float = 0,
|
145 |
+
noise_scale: float = 0.4,
|
146 |
+
f0_method: str = "crepe",
|
147 |
+
db_thresh: int = -40,
|
148 |
+
pad_seconds: float = 0.5,
|
149 |
+
chunk_seconds: float = 0.5,
|
150 |
+
absolute_thresh: bool = False,
|
151 |
+
):
|
152 |
+
model = models[speakers.index(speaker)]
|
153 |
+
audio, _ = librosa.load(audio, sr=model.target_sample, duration=duration_limit)
|
154 |
+
audio = model.infer_silence(
|
155 |
+
audio.astype(np.float32),
|
156 |
+
speaker=speaker,
|
157 |
+
transpose=transpose,
|
158 |
+
auto_predict_f0=auto_predict_f0,
|
159 |
+
cluster_infer_ratio=cluster_infer_ratio,
|
160 |
+
noise_scale=noise_scale,
|
161 |
+
f0_method=f0_method,
|
162 |
+
db_thresh=db_thresh,
|
163 |
+
pad_seconds=pad_seconds,
|
164 |
+
chunk_seconds=chunk_seconds,
|
165 |
+
absolute_thresh=absolute_thresh,
|
166 |
+
)
|
167 |
+
return model.target_sample, audio
|
168 |
+
|
169 |
+
|
170 |
+
def predict_song_from_yt(
|
171 |
+
ytid_or_url,
|
172 |
+
start,
|
173 |
+
end,
|
174 |
+
speaker=speakers[0],
|
175 |
+
transpose: int = 0,
|
176 |
+
auto_predict_f0: bool = False,
|
177 |
+
cluster_infer_ratio: float = 0,
|
178 |
+
noise_scale: float = 0.4,
|
179 |
+
f0_method: str = "dio",
|
180 |
+
db_thresh: int = -40,
|
181 |
+
pad_seconds: float = 0.5,
|
182 |
+
chunk_seconds: float = 0.5,
|
183 |
+
absolute_thresh: bool = False,
|
184 |
+
):
|
185 |
+
model = models[speakers.index(speaker)]
|
186 |
+
end = min(start + duration_limit, end)
|
187 |
+
original_track_filepath = download_youtube_clip(
|
188 |
+
ytid_or_url,
|
189 |
+
start,
|
190 |
+
end,
|
191 |
+
"track.wav",
|
192 |
+
force=True,
|
193 |
+
url_base="" if ytid_or_url.startswith("http") else "https://www.youtube.com/watch?v=",
|
194 |
+
)
|
195 |
+
vox_wav, inst_wav = extract_vocal_demucs(demucs_model, original_track_filepath)
|
196 |
+
if transpose != 0:
|
197 |
+
inst_wav = librosa.effects.pitch_shift(inst_wav.T, sr=model.target_sample, n_steps=transpose).T
|
198 |
+
cloned_vox = model.infer_silence(
|
199 |
+
vox_wav.astype(np.float32),
|
200 |
+
speaker=speaker,
|
201 |
+
transpose=transpose,
|
202 |
+
auto_predict_f0=auto_predict_f0,
|
203 |
+
cluster_infer_ratio=cluster_infer_ratio,
|
204 |
+
noise_scale=noise_scale,
|
205 |
+
f0_method=f0_method,
|
206 |
+
db_thresh=db_thresh,
|
207 |
+
pad_seconds=pad_seconds,
|
208 |
+
chunk_seconds=chunk_seconds,
|
209 |
+
absolute_thresh=absolute_thresh,
|
210 |
+
)
|
211 |
+
full_song = inst_wav + np.expand_dims(cloned_vox, 1)
|
212 |
+
return (model.target_sample, full_song), (model.target_sample, cloned_vox)
|
213 |
+
|
214 |
+
|
215 |
+
|
216 |
+
description = f"""
|
217 |
+
<center>💡 - 如何使用此程序:在页面上方选择“从B站视频上传”模块,填写视频网址和视频起止时间后,点击“submit”按键即可!您还可以点击页面最下方的示例快速预览效果</center>
|
218 |
+
""".strip()
|
219 |
+
|
220 |
+
article = """
|
221 |
+
<p style='text-align: center'> 注意❗:请不要生成会对个人以及组织造成侵害的内容,此程序仅供科研、学习及个人娱乐使用。
|
222 |
+
</p>
|
223 |
+
""".strip()
|
224 |
+
|
225 |
+
interface_mic = gr.Interface(
|
226 |
+
predict,
|
227 |
+
inputs=[
|
228 |
+
gr.Dropdown(speakers, value=speakers[0], label="🎤AI歌手选择🎶"),
|
229 |
+
gr.Audio(type="filepath", source="microphone", label="请用麦克风上传您想转换的歌曲"),
|
230 |
+
gr.Slider(-12, 12, value=0, step=1, label="变调 (默认为0;有正负值,+2为升高两个key)"),
|
231 |
+
gr.Checkbox(False, label="是否开启自动f0预测", info="勾选即为开启;配合聚类模型f0预测效果更好,仅限语音转换时使用", visible=False),
|
232 |
+
gr.Slider(0.0, 1.0, value=default_cluster_infer_ratio, step=0.1, label="聚类模型混合比例", info="0-1之间,0即不启用聚类。使用聚类模型能提升音色相似度,但会导致咬字下降 (如果使用,建议0.5左右)"),
|
233 |
+
gr.Slider(0.0, 1.0, value=0.4, step=0.1, label="noise scale (建议保持不变)", visible=False),
|
234 |
+
gr.Dropdown(
|
235 |
+
choices=["crepe", "crepe-tiny", "parselmouth", "dio", "harvest"],
|
236 |
+
value=default_f0_method,
|
237 |
+
label="模型推理方法 (crepe推理效果最好)", visible=False
|
238 |
+
),
|
239 |
+
],
|
240 |
+
outputs="audio",
|
241 |
+
cache_examples=False,
|
242 |
+
title="🌊💕🎶 - 滔滔AI+音乐:可从B站直接上传素材,无需分离背景音",
|
243 |
+
description=description,
|
244 |
+
article=article,
|
245 |
+
)
|
246 |
+
interface_file = gr.Interface(
|
247 |
+
predict,
|
248 |
+
inputs=[
|
249 |
+
gr.Dropdown(speakers, value=speakers[0], label="🎤AI歌手选择🎶"),
|
250 |
+
gr.Audio(type="filepath", source="upload", label="请上传您想转换的歌曲 (仅人声部分)"),
|
251 |
+
gr.Slider(-12, 12, value=0, step=1, label="变调 (默认为0;有正负值,+2为升高两个key)"),
|
252 |
+
gr.Checkbox(False, label="是否开启自动f0预测", info="勾选即为开启;配合聚类模型f0预测效果更好,仅限语音转换时使用", visible=False),
|
253 |
+
gr.Slider(0.0, 1.0, value=default_cluster_infer_ratio, step=0.1, label="聚类模型混合比例", info="0-1之间,0即不启用聚类。使用聚类模型能提升音色相似度,但会导致咬字下降 (如果使用,建议0.5左右)"),
|
254 |
+
gr.Slider(0.0, 1.0, value=0.4, step=0.1, label="noise scale (建议保持不变)", visible=False),
|
255 |
+
gr.Dropdown(
|
256 |
+
choices=["crepe", "crepe-tiny", "parselmouth", "dio", "harvest"],
|
257 |
+
value=default_f0_method,
|
258 |
+
label="模型推理方法 (crepe推理效果最好)", visible=False
|
259 |
+
),
|
260 |
+
],
|
261 |
+
outputs="audio",
|
262 |
+
cache_examples=False,
|
263 |
+
title="🌊💕🎶 可从B站直接上传素材,无需分离背景音",
|
264 |
+
description=description,
|
265 |
+
article=article,
|
266 |
+
)
|
267 |
+
interface_yt = gr.Interface(
|
268 |
+
predict_song_from_yt,
|
269 |
+
inputs=[
|
270 |
+
gr.Textbox(
|
271 |
+
label="Bilibili网址", info="请填写含有您喜欢歌曲的Bilibili网址,可直接填写相应的BV号"
|
272 |
+
),
|
273 |
+
gr.Number(value=0, label="起始时间 (秒)"),
|
274 |
+
gr.Number(value=15, label="结束时间 (秒)"),
|
275 |
+
gr.Dropdown(speakers, value=speakers[0], label="🎤AI歌手选择🎶"),
|
276 |
+
gr.Slider(-12, 12, value=0, step=1, label="变调 (默认为0;有正负值,+2为升高两个key)"),
|
277 |
+
gr.Checkbox(False, label="是否开启自动f0预测", info="勾选即为开启;配合聚类模型f0预测效果更好,仅限语音转换时使用", visible=False),
|
278 |
+
gr.Slider(0.0, 1.0, value=default_cluster_infer_ratio, step=0.1, label="聚类模型混合比例", info="0-1之间,0即不启用聚类。使用聚类模型能提升音色相似度,但会导致咬字下降"),
|
279 |
+
gr.Slider(0.0, 1.0, value=0.4, step=0.1, label="noise scale (建议保持不变)", visible=False),
|
280 |
+
gr.Dropdown(
|
281 |
+
choices=["crepe", "crepe-tiny", "parselmouth", "dio", "harvest"],
|
282 |
+
value=default_f0_method,
|
283 |
+
label="模型推理方法 (crepe推理效果最好)", visible=False
|
284 |
+
),
|
285 |
+
],
|
286 |
+
outputs=[gr.Audio(label="AI歌手+伴奏🎵"), gr.Audio(label="AI歌手人声部分🎤")],
|
287 |
+
title="🌊💕🎶 - 可从B站直接上传素材,无需分离背景音",
|
288 |
+
description=description,
|
289 |
+
article=article,
|
290 |
+
cache_examples=False,
|
291 |
+
)
|
292 |
+
interface = gr.TabbedInterface(
|
293 |
+
[interface_yt, interface_mic, interface_file],
|
294 |
+
["📺 - 从B站视频上传 ⭐推荐⭐", "🎙️ - 从麦克风上传", "🎵 - 从文件上传"],
|
295 |
+
)
|
296 |
+
|
297 |
+
if __name__ == "__main__":
|
298 |
+
interface.launch(show_error=True)
|