kevinwang676's picture
Update app.py
7b5ef9c
raw
history blame
12.4 kB
import json
import os
import subprocess
from pathlib import Path
import gradio as gr
import librosa
import numpy as np
import torch
from demucs.apply import apply_model
from demucs.pretrained import DEFAULT_MODEL, get_model
from huggingface_hub import hf_hub_download, list_repo_files
from so_vits_svc_fork.hparams import HParams
from so_vits_svc_fork.inference.core import Svc
###################################################################
# REPLACE THESE VALUES TO CHANGE THE MODEL REPO/CKPT NAME/SETTINGS
###################################################################
# The Hugging Face Hub repo ID - 在这里修改repo_id,可替换成任何已经训练好的模型!
repo_id = "kevinwang676/ai-qing"
# If None, Uses latest ckpt in the repo
ckpt_name = None
# If None, Uses "kmeans.pt" if it exists in the repo
cluster_model_name = None
# Set the default f0 type to use - use the one it was trained on.
# The default for so-vits-svc-fork is "dio".
# Options: "crepe", "crepe-tiny", "parselmouth", "dio", "harvest"
default_f0_method = "crepe"
# The default ratio of cluster inference to SVC inference.
# If cluster_model_name is not found in the repo, this is set to 0.
default_cluster_infer_ratio = 0.5
# Limit on duration of audio at inference time. increase if you can
# In this parent app, we set the limit with an env var to 30 seconds
# If you didnt set env var + you go OOM try changing 9e9 to <=300ish
duration_limit = int(os.environ.get("MAX_DURATION_SECONDS", 9e9))
###################################################################
# Figure out the latest generator by taking highest value one.
# Ex. if the repo has: G_0.pth, G_100.pth, G_200.pth, we'd use G_200.pth
if ckpt_name is None:
latest_id = sorted(
[
int(Path(x).stem.split("_")[1])
for x in list_repo_files(repo_id)
if x.startswith("G_") and x.endswith(".pth")
]
)[-1]
ckpt_name = f"G_{latest_id}.pth"
cluster_model_name = cluster_model_name or "kmeans.pt"
if cluster_model_name in list_repo_files(repo_id):
print(f"Found Cluster model - Downloading {cluster_model_name} from {repo_id}")
cluster_model_path = hf_hub_download(repo_id, cluster_model_name)
else:
print(f"Could not find {cluster_model_name} in {repo_id}. Using None")
cluster_model_path = None
default_cluster_infer_ratio = default_cluster_infer_ratio if cluster_model_path else 0
generator_path = hf_hub_download(repo_id, ckpt_name)
config_path = hf_hub_download(repo_id, "config.json")
hparams = HParams(**json.loads(Path(config_path).read_text()))
speakers = list(hparams.spk.keys())
device = "cuda" if torch.cuda.is_available() else "cpu"
model = Svc(net_g_path=generator_path, config_path=config_path, device=device, cluster_model_path=cluster_model_path)
demucs_model = get_model(DEFAULT_MODEL)
def extract_vocal_demucs(model, filename, sr=44100, device=None, shifts=1, split=True, overlap=0.25, jobs=0):
wav, sr = librosa.load(filename, mono=False, sr=sr)
wav = torch.tensor(wav)
ref = wav.mean(0)
wav = (wav - ref.mean()) / ref.std()
sources = apply_model(
model, wav[None], device=device, shifts=shifts, split=split, overlap=overlap, progress=True, num_workers=jobs
)[0]
sources = sources * ref.std() + ref.mean()
# We take just the vocals stem. I know the vocals for this model are at index -1
# If using different model, check model.sources.index('vocals')
vocal_wav = sources[-1]
# I did this because its the same normalization the so-vits model required
vocal_wav = vocal_wav / max(1.01 * vocal_wav.abs().max(), 1)
vocal_wav = vocal_wav.numpy()
vocal_wav = librosa.to_mono(vocal_wav)
vocal_wav = vocal_wav.T
instrumental_wav = sources[:-1].sum(0).numpy().T
return vocal_wav, instrumental_wav
def download_youtube_clip(
video_identifier,
start_time,
end_time,
output_filename,
num_attempts=5,
url_base="https://www.youtube.com/watch?v=",
quiet=False,
force=False,
):
output_path = Path(output_filename)
if output_path.exists():
if not force:
return output_path
else:
output_path.unlink()
quiet = "--quiet --no-warnings" if quiet else ""
command = f"""
yt-dlp {quiet} -x --audio-format wav -f bestaudio -o "{output_filename}" --download-sections "*{start_time}-{end_time}" "{url_base}{video_identifier}" # noqa: E501
""".strip()
attempts = 0
while True:
try:
_ = subprocess.check_output(command, shell=True, stderr=subprocess.STDOUT)
except subprocess.CalledProcessError:
attempts += 1
if attempts == num_attempts:
return None
else:
break
if output_path.exists():
return output_path
else:
return None
def predict(
speaker,
audio,
transpose: int = 0,
auto_predict_f0: bool = False,
cluster_infer_ratio: float = 0,
noise_scale: float = 0.4,
f0_method: str = "crepe",
db_thresh: int = -40,
pad_seconds: float = 0.5,
chunk_seconds: float = 0.5,
absolute_thresh: bool = False,
):
audio, _ = librosa.load(audio, sr=model.target_sample, duration=duration_limit)
audio = model.infer_silence(
audio.astype(np.float32),
speaker=speaker,
transpose=transpose,
auto_predict_f0=auto_predict_f0,
cluster_infer_ratio=cluster_infer_ratio,
noise_scale=noise_scale,
f0_method=f0_method,
db_thresh=db_thresh,
pad_seconds=pad_seconds,
chunk_seconds=chunk_seconds,
absolute_thresh=absolute_thresh,
)
return model.target_sample, audio
def predict_song_from_yt(
ytid_or_url,
start,
end,
speaker=speakers[0],
transpose: int = 0,
auto_predict_f0: bool = False,
cluster_infer_ratio: float = 0,
noise_scale: float = 0.4,
f0_method: str = "dio",
db_thresh: int = -40,
pad_seconds: float = 0.5,
chunk_seconds: float = 0.5,
absolute_thresh: bool = False,
):
end = min(start + duration_limit, end)
original_track_filepath = download_youtube_clip(
ytid_or_url,
start,
end,
"track.wav",
force=True,
url_base="" if ytid_or_url.startswith("http") else "https://www.youtube.com/watch?v=",
)
vox_wav, inst_wav = extract_vocal_demucs(demucs_model, original_track_filepath)
if transpose != 0:
inst_wav = librosa.effects.pitch_shift(inst_wav.T, sr=model.target_sample, n_steps=transpose).T
cloned_vox = model.infer_silence(
vox_wav.astype(np.float32),
speaker=speaker,
transpose=transpose,
auto_predict_f0=auto_predict_f0,
cluster_infer_ratio=cluster_infer_ratio,
noise_scale=noise_scale,
f0_method=f0_method,
db_thresh=db_thresh,
pad_seconds=pad_seconds,
chunk_seconds=chunk_seconds,
absolute_thresh=absolute_thresh,
)
full_song = inst_wav + np.expand_dims(cloned_vox, 1)
return (model.target_sample, full_song), (model.target_sample, cloned_vox)
description = f"""
## <center>🌟 - 滔滔AI合作音乐人:[一清清清](https://space.bilibili.com/22960772?spm_id_from=333.337.0.0);AI歌手,唱我想唱!</center>
## <center>🌊 - 滔滔AI,为您提供全场景的AI声音服务(如AI拟声、AI歌手、AI变声等)</center>
### <center>🎡 - 更多精彩,尽在[滔滔AI](http://www.talktalkai.com);合作:talktalkai.kevin@gmail.com</center>
### <center>💡 - 如何使用此程序:填写视频网址和视频起止时间后,点击“submit”按键即可!</center>
""".strip()
article = """
<p style='text-align: center'> 注意❗:请不要生成会对个人以及组织造成侵害的内容,此程序仅供科研、学习及个人娱乐使用。
</p>
<p style='text-align: center'> 🌊🏞️🎶 - 江水东流急,滔滔无尽声。 明·顾璘
</p>
""".strip()
interface_mic = gr.Interface(
predict,
inputs=[
gr.Dropdown(speakers, value=speakers[0], label="AI歌手-一清清清"),
gr.Audio(type="filepath", source="microphone", label="请用麦克风上传您想转换的歌曲"),
gr.Slider(-12, 12, value=0, step=1, label="变调 (默认为0;+2为升高两个key)"),
gr.Checkbox(False, label="是否开启自动f0预测", info="配合聚类模型f0预测效果更好,仅限转换语音时使用"),
gr.Slider(0.0, 1.0, value=default_cluster_infer_ratio, step=0.1, label="聚类模型混合比例", info="0-1之间,0即不启用聚类。使用聚类模型能提升音色相似度,但会导致咬字下降 (如果使用,建议0.5左右)"),
gr.Slider(0.0, 1.0, value=0.4, step=0.1, label="noise scale (建议保持不变)"),
gr.Dropdown(
choices=["crepe", "crepe-tiny", "parselmouth", "dio", "harvest"],
value=default_f0_method,
label="模型推理方法 (crepe推理效果最好)",
),
],
outputs="audio",
title="🥳🎶🌊 - 滔滔AI+音乐:可从B站直接上传素材,无需分离背景音",
description=description,
article=article,
)
interface_file = gr.Interface(
predict,
inputs=[
gr.Dropdown(speakers, value=speakers[0], label="AI歌手-一清清清"),
gr.Audio(type="filepath", source="upload", label="请上传您想转换的歌曲 (仅人声部分)"),
gr.Slider(-12, 12, value=0, step=1, label="变调 (默认为0;+2为升高两个key)"),
gr.Checkbox(False, label="是否开启自动f0预测", info="配合聚类模型f0预测效果更好,仅限转换语音时使用"),
gr.Slider(0.0, 1.0, value=default_cluster_infer_ratio, step=0.1, label="聚类模型混合比例", info="0-1之间,0即不启用聚类。使用聚类模型能提升音色相似度,但会导致咬字下降 (如果使用,建议0.5左右)"),
gr.Slider(0.0, 1.0, value=0.4, step=0.1, label="noise scale (建议保持不变)"),
gr.Dropdown(
choices=["crepe", "crepe-tiny", "parselmouth", "dio", "harvest"],
value=default_f0_method,
label="模型推理方法 (crepe推理效果最好)",
),
],
outputs="audio",
title="🥳🎶🌊 - 滔滔AI+音乐:可从B站直接上传素材,无需分离背景音",
description=description,
article=article,
)
interface_yt = gr.Interface(
predict_song_from_yt,
inputs=[
gr.Textbox(
label="Bilibili网址", info="请填写含有您喜欢歌曲的Bilibili网址,可直接填写相应的BV号", value="https://www.bilibili.com/video/BV..."
),
gr.Number(value=0, label="起始时间 (秒)"),
gr.Number(value=15, label="结束时间 (秒)"),
gr.Dropdown(speakers, value=speakers[0], label="AI歌手-一清清清"),
gr.Slider(-12, 12, value=0, step=1, label="变调 (默认为0;+2为升高两个key)"),
gr.Checkbox(False, label="是否开启自动f0预测", info="勾选即为开启;配合聚类模型f0预测效果更好,仅限转换语音时使用"),
gr.Slider(0.0, 1.0, value=default_cluster_infer_ratio, step=0.1, label="聚类模型混合比例", info="0-1之间,0即不启用聚类。使用聚类模型能提升音色相似度,但会导致咬字下降 (如果使用,建议0.5左右)"),
gr.Slider(0.0, 1.0, value=0.4, step=0.1, label="noise scale (建议保持不变)"),
gr.Dropdown(
choices=["crepe", "crepe-tiny", "parselmouth", "dio", "harvest"],
value=default_f0_method,
label="模型推理方法 (crepe推理效果最好)",
),
],
outputs=[gr.Audio(label="AI歌手+伴奏"), gr.Audio(label="AI歌手人声部分")],
title="🥳🎶🌊 - 滔滔AI+音乐:可从B站直接上传素材,无需分离背景音",
description=description,
article=article,
examples=[
["https://www.bilibili.com/video/BV19u411Y73W", 12, 35, speakers[0], 0, False, default_cluster_infer_ratio, 0.4, default_f0_method],
],
)
interface = gr.TabbedInterface(
[interface_mic, interface_file, interface_yt],
["🎙️ - 从麦克风上传", "🎵 - 从文件上传", "📺 - 从B站视频上传(推荐)"],
)
if __name__ == "__main__":
interface.launch()