Spaces:
Runtime error
Runtime error
import argparse | |
from pathlib import Path | |
from typing import Optional | |
import torch | |
import utils | |
from models import SynthesizerTrn | |
from text.symbols import symbols | |
OPSET_VERSION = 15 | |
def main() -> None: | |
torch.manual_seed(1234) | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--model-path", required=True, help="Path to model weights (.pth)" | |
) | |
parser.add_argument( | |
"--config-path", required=True, help="Path to model config (.json)" | |
) | |
parser.add_argument("--output", required=True, help="Path to output model (.onnx)") | |
args = parser.parse_args() | |
args.model_path = Path(args.model_path) | |
args.config_path = Path(args.config_path) | |
args.output = Path(args.output) | |
args.output.parent.mkdir(parents=True, exist_ok=True) | |
hps = utils.get_hparams_from_file(args.config_path) | |
if ( | |
"use_mel_posterior_encoder" in hps.model.keys() | |
and hps.model.use_mel_posterior_encoder == True | |
): | |
print("Using mel posterior encoder for VITS2") | |
posterior_channels = 80 # vits2 | |
hps.data.use_mel_posterior_encoder = True | |
else: | |
print("Using lin posterior encoder for VITS1") | |
posterior_channels = hps.data.filter_length // 2 + 1 | |
hps.data.use_mel_posterior_encoder = False | |
model_g = SynthesizerTrn( | |
len(symbols), | |
posterior_channels, | |
hps.train.segment_size // hps.data.hop_length, | |
n_speakers=hps.data.n_speakers, | |
**hps.model, | |
) | |
_ = model_g.eval() | |
_ = utils.load_checkpoint(args.model_path, model_g, None) | |
def infer_forward(text, text_lengths, scales, sid=None): | |
noise_scale = scales[0] | |
length_scale = scales[1] | |
noise_scale_w = scales[2] | |
audio = model_g.infer( | |
text, | |
text_lengths, | |
noise_scale=noise_scale, | |
length_scale=length_scale, | |
noise_scale_w=noise_scale_w, | |
sid=sid, | |
)[0] | |
return audio | |
model_g.forward = infer_forward | |
dummy_input_length = 50 | |
sequences = torch.randint( | |
low=0, high=len(symbols), size=(1, dummy_input_length), dtype=torch.long | |
) | |
sequence_lengths = torch.LongTensor([sequences.size(1)]) | |
sid: Optional[torch.LongTensor] = None | |
if hps.data.n_speakers > 1: | |
sid = torch.LongTensor([0]) | |
# noise, length, noise_w | |
scales = torch.FloatTensor([0.667, 1.0, 0.8]) | |
dummy_input = (sequences, sequence_lengths, scales, sid) | |
# Export | |
torch.onnx.export( | |
model=model_g, | |
args=dummy_input, | |
f=str(args.output), | |
verbose=False, | |
opset_version=OPSET_VERSION, | |
input_names=["input", "input_lengths", "scales", "sid"], | |
output_names=["output"], | |
dynamic_axes={ | |
"input": {0: "batch_size", 1: "phonemes"}, | |
"input_lengths": {0: "batch_size"}, | |
"output": {0: "batch_size", 1: "time1", 2: "time2"}, | |
}, | |
) | |
print(f"Exported model to {args.output}") | |
if __name__ == "__main__": | |
main() | |