kevinwang676's picture
Upload 93 files
9016314 verified
import os
import logging
from collections import defaultdict
import numpy as np
import pickle
import tensorflow as tf
from pprint import pformat
from .utils import visualize, plot_functions, plot_img_functions
class Runner(object):
def __init__(self, args, model):
self.args = args
self.sess = model.sess
self.model = model
def set_dataset(self, trainset, validset, testset):
self.trainset = trainset
self.validset = validset
self.testset = testset
def train(self):
train_metrics = []
num_batches = self.trainset.num_batches
self.trainset.initialize()
for i in range(num_batches):
batch = self.trainset.next_batch()
metric, summ, step, _ = self.model.execute(
[self.model.metric, self.model.summ_op,
self.model.global_step, self.model.train_op],
batch)
if (self.args.summ_freq > 0) and (i % self.args.summ_freq == 0):
self.model.writer.add_summary(summ, step)
train_metrics.append(metric)
train_metrics = np.concatenate(train_metrics, axis=0)
return np.mean(train_metrics)
def valid(self):
valid_metrics = []
num_batches = self.validset.num_batches
self.validset.initialize()
for i in range(num_batches):
batch = self.validset.next_batch()
metric = self.model.execute(self.model.metric, batch)
valid_metrics.append(metric)
valid_metrics = np.concatenate(valid_metrics, axis=0)
return np.mean(valid_metrics)
def valid_mse(self):
valid_mse = []
num_batches = self.validset.num_batches
self.validset.initialize()
for i in range(num_batches):
batch = self.validset.next_batch()
sample = self.model.execute(self.model.sample, batch)
mse = np.mean(np.sum(np.square(sample-batch['x']), axis=tuple(range(2,sample.ndim))), axis=1)
valid_mse.append(mse)
valid_mse = np.concatenate(valid_mse, axis=0)
return np.mean(valid_mse)
def valid_chd(self):
pass
def valid_emd(self):
pass
def test(self):
test_metrics = []
num_batches = self.testset.num_batches
self.testset.initialize()
for i in range(num_batches):
batch = self.testset.next_batch()
metric = self.model.execute(self.model.metric, batch)
test_metrics.append(metric)
test_metrics = np.concatenate(test_metrics)
return np.mean(test_metrics)
def test_mse(self):
test_mse = []
num_batches = self.testset.num_batches
self.testset.initialize()
for i in range(num_batches):
batch = self.testset.next_batch()
sample = self.model.execute(self.model.sample, batch)
mse = np.mean(np.sum(np.square(sample-batch['x']), axis=tuple(range(2,sample.ndim))), axis=1)
test_mse.append(mse)
test_mse = np.concatenate(test_mse, axis=0)
return np.mean(test_mse)
def test_chd(self):
pass
def test_emd(self):
pass
def run(self):
logging.info('==== start training ====')
best_train_metric = -np.inf
best_valid_metric = -np.inf
best_test_metric = -np.inf
for epoch in range(self.args.epochs):
train_metric = self.train()
valid_metric = self.valid()
test_metric = self.test()
# save
if train_metric > best_train_metric:
best_train_metric = train_metric
if valid_metric > best_valid_metric:
best_valid_metric = valid_metric
self.model.save()
if test_metric > best_test_metric:
best_test_metric = test_metric
logging.info("Epoch %d, train: %.4f/%.4f, valid: %.4f/%.4f test: %.4f/%.4f" %
(epoch, train_metric, best_train_metric,
valid_metric, best_valid_metric,
test_metric, best_test_metric))
# evaluate
if epoch % 100 == 0:
logging.info('==== start evaluating ====')
self.evaluate(folder=f'{epoch}', load=False)
self.model.save('last')
# finish
logging.info('==== start evaluating ====')
self.evaluate(load=True)
def evaluate(self, folder='test', load=True):
save_dir = f'{self.args.exp_dir}/evaluate/{folder}/'
os.makedirs(save_dir, exist_ok=True)
if load: self.model.load()
# # likelihood
if 'likel' in self.args.eval_metrics:
valid_likel = self.valid()
test_likel = self.test()
logging.info(f"likelihood => valid: {valid_likel} test: {test_likel}")
# # mse
if 'mse' in self.args.eval_metrics:
valid_mse = self.valid_mse()
test_mse = self.test_mse()
logging.info(f"mse => valid: {valid_mse} test: {test_mse}")
if 'chd' in self.args.eval_metrics:
valid_chd = self.valid_chd()
test_chd = self.test_chd()
logging.info(f"chd => valid: {valid_chd} test: {test_chd}")
if 'emd' in self.args.eval_metrics:
valid_emd = self.valid_emd()
test_emd = self.test_emd()
logging.info(f"emd => valid: {valid_emd} test: {test_emd}")
if 'sam' in self.args.eval_metrics:
# train set
self.trainset.initialize()
batch = self.trainset.next_batch()
train_sample = self.model.execute(self.model.sample, batch)
visualize(train_sample, batch, f'{save_dir}/train_sam')
# valid set
self.validset.initialize()
batch = self.validset.next_batch()
valid_sample = self.model.execute(self.model.sample, batch)
visualize(valid_sample, batch, f'{save_dir}/valid_sam')
# test set
self.testset.initialize()
batch = self.testset.next_batch()
test_sample = self.model.execute(self.model.sample, batch)
visualize(test_sample, batch, f'{save_dir}/test_sam')
if 'fns' in self.args.eval_metrics:
# train set
self.trainset.initialize()
batch = self.trainset.next_batch()
train_mean, train_std = self.model.execute([self.model.mean, self.model.std], batch)
plot_functions(train_mean, train_std, batch, f'{save_dir}/train_fn')
# valid set
self.validset.initialize()
batch = self.validset.next_batch()
valid_mean, valid_std = self.model.execute([self.model.mean, self.model.std], batch)
plot_functions(valid_mean, valid_std, batch, f'{save_dir}/valid_fn')
# test set
self.testset.initialize()
batch = self.testset.next_batch()
test_mean, test_std = self.model.execute([self.model.mean, self.model.std], batch)
plot_functions(test_mean, test_std, batch, f'{save_dir}/test_fn')
if 'imfns' in self.args.eval_metrics:
# train set
self.trainset.initialize()
batch = self.trainset.next_batch()
train_mean, train_std = self.model.execute([self.model.mean, self.model.std], batch)
plot_img_functions(train_mean, train_std, batch, f'{save_dir}/train_fn')
# valid set
self.validset.initialize()
batch = self.validset.next_batch()
valid_mean, valid_std = self.model.execute([self.model.mean, self.model.std], batch)
plot_img_functions(valid_mean, valid_std, batch, f'{save_dir}/valid_fn')
# test set
self.testset.initialize()
batch = self.testset.next_batch()
test_mean, test_std = self.model.execute([self.model.mean, self.model.std], batch)
plot_img_functions(test_mean, test_std, batch, f'{save_dir}/test_fn')