Spaces:
Running
Running
import os | |
import sys | |
p = os.path.split(os.path.dirname(os.path.abspath(__file__)))[0] | |
sys.path.append(p) | |
import logging | |
import argparse | |
import pickle | |
import numpy as np | |
import tensorflow as tf | |
from pprint import pformat | |
import matplotlib.pyplot as plt | |
import glob | |
import tensorflow as tf | |
from utils.hparams import HParams | |
from models import get_model | |
from datasets.speech import Dataset | |
from sklearn.manifold import TSNE | |
import seaborn as sns | |
clrs = sns.color_palette("husl", 5) | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--cfg_file', type=str) | |
parser.add_argument('--seed', type=int, default=1234) | |
parser.add_argument('--gpu', type=str, default='0') | |
args = parser.parse_args() | |
params = HParams(args.cfg_file) | |
# modify config | |
params.mask_type = 'det_expand' | |
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu | |
#np.random.seed(args.seed) | |
#tf.set_random_seed(args.seed) | |
# data | |
testset = Dataset("test", batch_size=100, set_size=200, mask_type=params.mask_type) | |
testset.initialize() | |
# model | |
model = get_model(params) | |
model.load() | |
# run | |
save_dir = f'{params.exp_dir}/evaluate/speech_expansion/' | |
os.makedirs(save_dir, exist_ok=True) | |
log_file = open(f'{save_dir}/log.txt', 'w') | |
def evaluate(batch): | |
sample = model.execute(model.sample, batch) | |
return sample | |
def visualize(input, mask, sample, save_path): | |
#with open(f'{save_path}data.pkl', 'wb') as f: | |
# pickle.dump((batch, sample), f) | |
sample = sample | |
mask = mask | |
input = input | |
expanded = input * mask + sample * (1 - mask) | |
N = sample.shape[0] | |
D = sample.shape[1] | |
C = sample.shape[2] | |
if True: | |
cdict = {1: 'red', 2: 'blue', 3: 'green'} | |
for i in range(N): | |
expanded_embedded = TSNE(n_components=2, learning_rate=100, init='random', perplexity=60).fit_transform(expanded[i]) | |
plt.figure(figsize=(9,9)) | |
plt.tight_layout() | |
idx = np.where(mask[i,:,0]==0) | |
plt.scatter(expanded_embedded[idx, 0], expanded_embedded[idx,1], c = "#1A85FF", label="Synthesized", alpha=0.2) | |
idx = np.where(mask[i,:,0]==1) | |
plt.scatter(expanded_embedded[idx, 0], expanded_embedded[idx,1], c = "#D41159", label="Real") | |
plt.legend(fontsize="20", loc ="upper left") | |
plt.tick_params(left = False, right = False , labelleft = False , | |
labelbottom = False, bottom = False) | |
plt.savefig(f"{save_path}embed_{i}.png", dpi=200) | |
plt.close() | |
if False: | |
D_id_color = {'0': u'orchid', '1': u'darkcyan', '2': u'grey', '3': u'dodgerblue', '4': u'turquoise', '5': u'darkviolet'} | |
sample = sample.reshape(N * D, C) | |
mask = mask.reshape(N * D, C) | |
input = input.reshape(N * D, C) | |
expanded = expanded.reshape(N * D, C) | |
expanded_embedded = TSNE(n_components=2, learning_rate=1, init='random', perplexity=50).fit_transform(expanded) | |
expanded_embedded = expanded_embedded.reshape(N, D, 2) | |
plt.figure(figsize=(10,10)) | |
plt.tight_layout() | |
for i in range(N): | |
plt.scatter(expanded_embedded[i, :, 0], expanded_embedded[i, :,1], c = D_id_color[str(i % 6)]) | |
plt.savefig(f"{save_path}embed.png", dpi=200) | |
plt.close() | |
# test | |
save_path = f'{save_dir}/test/' | |
os.makedirs(save_path, exist_ok=True) | |
samples = [] | |
inputs = [] | |
masks = [] | |
filenames = [] | |
num_sample_step = 20 | |
batch = testset.next_batch() | |
for s in range(num_sample_step): | |
sample = evaluate(batch) | |
samples.append(sample) | |
samples = np.concatenate(samples, axis=1) | |
inputs = np.tile(batch['x'], (1, num_sample_step, 1)) | |
masks = np.tile(batch['b'], (1, num_sample_step, 1)) | |
visualize(inputs, masks, samples, save_path) | |
log_file.close() | |