kevinwang676 commited on
Commit
6755a2d
·
verified ·
1 Parent(s): bacce7b

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +18 -0
  2. .gitignore +134 -0
  3. .gitmodules +11 -0
  4. Dockerfile +19 -0
  5. LICENSE +21 -0
  6. MMCM/.gitignore +139 -0
  7. MMCM/Dockerfile +83 -0
  8. MMCM/README.md +2 -0
  9. MMCM/requirements.txt +291 -0
  10. MMCM/setup.py +25 -0
  11. README-zh.md +545 -0
  12. configs/model/T2I_all_model.py +15 -0
  13. configs/model/ip_adapter.py +66 -0
  14. configs/model/lcm_model.py +17 -0
  15. configs/model/motion_model.py +22 -0
  16. configs/model/negative_prompt.py +32 -0
  17. configs/model/referencenet.py +14 -0
  18. configs/tasks/example.yaml +215 -0
  19. controlnet_aux/.gitignore +178 -0
  20. controlnet_aux/LICENSE.txt +201 -0
  21. controlnet_aux/README.md +112 -0
  22. controlnet_aux/setup.py +233 -0
  23. controlnet_aux/src/controlnet_aux/__init__.py +18 -0
  24. controlnet_aux/src/controlnet_aux/canny/__init__.py +36 -0
  25. controlnet_aux/src/controlnet_aux/dwpose/__init__.py +235 -0
  26. controlnet_aux/src/controlnet_aux/dwpose/dwpose_config/dwpose-l_384x288.py +257 -0
  27. controlnet_aux/src/controlnet_aux/dwpose/util.py +303 -0
  28. controlnet_aux/src/controlnet_aux/dwpose/wholebody.py +123 -0
  29. controlnet_aux/src/controlnet_aux/dwpose/yolox_config/yolox_l_8xb8-300e_coco.py +245 -0
  30. controlnet_aux/src/controlnet_aux/hed/__init__.py +129 -0
  31. controlnet_aux/src/controlnet_aux/leres/__init__.py +118 -0
  32. controlnet_aux/src/controlnet_aux/leres/leres/LICENSE +23 -0
  33. controlnet_aux/src/controlnet_aux/leres/leres/Resnet.py +199 -0
  34. controlnet_aux/src/controlnet_aux/leres/leres/Resnext_torch.py +237 -0
  35. controlnet_aux/src/controlnet_aux/leres/leres/__init__.py +0 -0
  36. controlnet_aux/src/controlnet_aux/leres/leres/depthmap.py +548 -0
  37. controlnet_aux/src/controlnet_aux/leres/leres/multi_depth_model_woauxi.py +35 -0
  38. controlnet_aux/src/controlnet_aux/leres/leres/net_tools.py +54 -0
  39. controlnet_aux/src/controlnet_aux/leres/leres/network_auxi.py +417 -0
  40. controlnet_aux/src/controlnet_aux/leres/pix2pix/LICENSE +19 -0
  41. controlnet_aux/src/controlnet_aux/leres/pix2pix/__init__.py +0 -0
  42. controlnet_aux/src/controlnet_aux/leres/pix2pix/models/__init__.py +67 -0
  43. controlnet_aux/src/controlnet_aux/leres/pix2pix/models/base_model.py +244 -0
  44. controlnet_aux/src/controlnet_aux/leres/pix2pix/models/base_model_hg.py +58 -0
  45. controlnet_aux/src/controlnet_aux/leres/pix2pix/models/networks.py +623 -0
  46. controlnet_aux/src/controlnet_aux/leres/pix2pix/models/pix2pix4depth_model.py +155 -0
  47. controlnet_aux/src/controlnet_aux/leres/pix2pix/options/__init__.py +1 -0
  48. controlnet_aux/src/controlnet_aux/leres/pix2pix/options/base_options.py +156 -0
  49. controlnet_aux/src/controlnet_aux/leres/pix2pix/options/test_options.py +22 -0
  50. controlnet_aux/src/controlnet_aux/leres/pix2pix/util/__init__.py +1 -0
.gitattributes CHANGED
@@ -33,3 +33,21 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ data/images/duffy.png filter=lfs diff=lfs merge=lfs -text
37
+ data/result_video/Mona_Lisa,_by_Leonardo_da_Vinci,_from_C2RMF_retouched.mp4 filter=lfs diff=lfs merge=lfs -text
38
+ data/result_video/Portrait-of-Dr.-Gachet.mp4 filter=lfs diff=lfs merge=lfs -text
39
+ data/result_video/Self-Portrait-with-Cropped-Hair.mp4 filter=lfs diff=lfs merge=lfs -text
40
+ data/result_video/The-Laughing-Cavalier.mp4 filter=lfs diff=lfs merge=lfs -text
41
+ data/result_video/boy_play_guitar.mp4 filter=lfs diff=lfs merge=lfs -text
42
+ data/result_video/boy_play_guitar2.mp4 filter=lfs diff=lfs merge=lfs -text
43
+ data/result_video/dufu.mp4 filter=lfs diff=lfs merge=lfs -text
44
+ data/result_video/girl_play_guitar2.mp4 filter=lfs diff=lfs merge=lfs -text
45
+ data/result_video/girl_play_guitar4.mp4 filter=lfs diff=lfs merge=lfs -text
46
+ data/result_video/jinkesi2.mp4 filter=lfs diff=lfs merge=lfs -text
47
+ data/result_video/river.mp4 filter=lfs diff=lfs merge=lfs -text
48
+ data/result_video/seaside2.mp4 filter=lfs diff=lfs merge=lfs -text
49
+ data/result_video/seaside4.mp4 filter=lfs diff=lfs merge=lfs -text
50
+ data/result_video/seaside_girl.mp4 filter=lfs diff=lfs merge=lfs -text
51
+ data/result_video/waterfall4.mp4 filter=lfs diff=lfs merge=lfs -text
52
+ data/result_video/yongen.mp4 filter=lfs diff=lfs merge=lfs -text
53
+ mmcm/vision/feature_extractor/wenlan/example/vivo_5w_lyrics.lyric filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ wheels/
23
+ pip-wheel-metadata/
24
+ share/python-wheels/
25
+ *.egg-info/
26
+ .installed.cfg
27
+ *.egg
28
+ MANIFEST
29
+
30
+ # PyInstaller
31
+ # Usually these files are written by a python script from a template
32
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
33
+ *.manifest
34
+ *.spec
35
+
36
+ # Installer logs
37
+ pip-log.txt
38
+ pip-delete-this-directory.txt
39
+
40
+ # Unit test / coverage reports
41
+ htmlcov/
42
+ .tox/
43
+ .nox/
44
+ .coverage
45
+ .coverage.*
46
+ .cache
47
+ nosetests.xml
48
+ coverage.xml
49
+ *.cover
50
+ .hypothesis/
51
+ .pytest_cache/
52
+
53
+ # Translations
54
+ *.mo
55
+ *.pot
56
+
57
+ # Django stuff:
58
+ *.log
59
+ local_settings.py
60
+ db.sqlite3
61
+
62
+ # Flask stuff:
63
+ instance/
64
+ .webassets-cache
65
+
66
+ # Scrapy stuff:
67
+ .scrapy
68
+
69
+ # Sphinx documentation
70
+ docs/_build/
71
+
72
+ # PyBuilder
73
+ target/
74
+
75
+ # Jupyter Notebook
76
+ .ipynb_checkpoints
77
+
78
+ # IPython
79
+ profile_default/
80
+ ipython_config.py
81
+
82
+ # pyenv
83
+ .python-version
84
+
85
+ # pipenv
86
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
87
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
88
+ # having no cross-platform support, pipenv may install dependencies that don’t work, or not
89
+ # install all needed dependencies.
90
+ #Pipfile.lock
91
+
92
+ # celery beat schedule file
93
+ celerybeat-schedule
94
+
95
+ # SageMath parsed files
96
+ *.sage.py
97
+
98
+ # Environments
99
+ .env
100
+ .venv
101
+ env/
102
+ venv/
103
+ ENV/
104
+ env.bak/
105
+ venv.bak/
106
+
107
+ # Spyder project settings
108
+ .spyderproject
109
+ .spyproject
110
+
111
+ # Rope project settings
112
+ .ropeproject
113
+
114
+ # mkdocs documentation
115
+ /site
116
+
117
+ # mypy
118
+ .mypy_cache/
119
+ .dmypy.json
120
+ dmypy.json
121
+
122
+ # Pyre type checker
123
+ .pyre/
124
+
125
+ *.swp
126
+ .*.swp
127
+
128
+ .DS_Store
129
+
130
+ # project
131
+ outputs/
132
+ results/
133
+ scripts/codetest/
134
+ # configs/train/video_creation_anchorxia_*
.gitmodules ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [submodule "MMCM"]
2
+ path = MMCM
3
+ url = https://github.com/TMElyralab/MMCM.git
4
+ [submodule "controlnet_aux"]
5
+ path = controlnet_aux
6
+ url = https://github.com/TMElyralab/controlnet_aux.git
7
+ branch = tme
8
+ [submodule "diffusers"]
9
+ path = diffusers
10
+ url = https://github.com/TMElyralab/diffusers.git
11
+ branch = tme
Dockerfile ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM anchorxia/musev:1.0.0
2
+
3
+ #MAINTAINER 维护者信息
4
+ LABEL MAINTAINER="anchorxia"
5
+ LABEL Email="anchorxia@tencent.com"
6
+ LABEL Description="musev gpu runtime image, base docker is pytorch/pytorch:2.0.1-cuda11.7-cudnn8-devel"
7
+ ARG DEBIAN_FRONTEND=noninteractive
8
+
9
+ USER root
10
+
11
+ SHELL ["/bin/bash", "--login", "-c"]
12
+
13
+ RUN . /opt/conda/etc/profile.d/conda.sh \
14
+ && echo "source activate musev" >> ~/.bashrc \
15
+ && conda activate musev \
16
+ && conda env list \
17
+ && pip install cuid
18
+
19
+ USER root
LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2024 TMElyralab
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
MMCM/.gitignore ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ wheels/
23
+ pip-wheel-metadata/
24
+ share/python-wheels/
25
+ *.egg-info/
26
+ .installed.cfg
27
+ *.egg
28
+ MANIFEST
29
+
30
+ # PyInstaller
31
+ # Usually these files are written by a python script from a template
32
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
33
+ *.manifest
34
+ *.spec
35
+
36
+ # Installer logs
37
+ pip-log.txt
38
+ pip-delete-this-directory.txt
39
+
40
+ # Unit test / coverage reports
41
+ htmlcov/
42
+ .tox/
43
+ .nox/
44
+ .coverage
45
+ .coverage.*
46
+ .cache
47
+ nosetests.xml
48
+ coverage.xml
49
+ *.cover
50
+ .hypothesis/
51
+ .pytest_cache/
52
+
53
+ # Translations
54
+ *.mo
55
+ *.pot
56
+
57
+ # Django stuff:
58
+ *.log
59
+ local_settings.py
60
+ db.sqlite3
61
+
62
+ # Flask stuff:
63
+ instance/
64
+ .webassets-cache
65
+
66
+ # Scrapy stuff:
67
+ .scrapy
68
+
69
+ # Sphinx documentation
70
+ docs/_build/
71
+
72
+ # PyBuilder
73
+ target/
74
+
75
+ # Jupyter Notebook
76
+ .ipynb_checkpoints
77
+
78
+ # IPython
79
+ profile_default/
80
+ ipython_config.py
81
+
82
+ # pyenv
83
+ .python-version
84
+
85
+ # pipenv
86
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
87
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
88
+ # having no cross-platform support, pipenv may install dependencies that don’t work, or not
89
+ # install all needed dependencies.
90
+ #Pipfile.lock
91
+
92
+ # celery beat schedule file
93
+ celerybeat-schedule
94
+
95
+ # SageMath parsed files
96
+ *.sage.py
97
+
98
+ # Environments
99
+ .env
100
+ .venv
101
+ env/
102
+ venv/
103
+ ENV/
104
+ env.bak/
105
+ venv.bak/
106
+
107
+ # Spyder project settings
108
+ .spyderproject
109
+ .spyproject
110
+
111
+ # Rope project settings
112
+ .ropeproject
113
+
114
+ # mkdocs documentation
115
+ /site
116
+
117
+ # mypy
118
+ .mypy_cache/
119
+ .dmypy.json
120
+ dmypy.json
121
+
122
+ # Pyre type checker
123
+ .pyre/
124
+
125
+ *.swp
126
+ .*.swp
127
+ dataset/files
128
+ experiments
129
+ log
130
+ csvs
131
+
132
+ .idea
133
+ .vscode
134
+ __pycache__/
135
+ *.code-workspace
136
+ .DS_Store
137
+ third_party/
138
+ .polaris_cache/
139
+ *.lock
MMCM/Dockerfile ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # FROM mirrors.tencent.com/todacc/venus-std-base-cuda11.8:0.1.0
2
+ FROM mirrors.tencent.com/todacc/venus-std-ext-cuda11.8-pytorch2.0-tf2.12-py3.10:0.7.0
3
+
4
+ #MAINTAINER 维护者信息
5
+ LABEL MAINTAINER="anchorxia"
6
+ LABEL Email="xzqjack@hotmail.com"
7
+ LABEL Description="gpu development image, from mirrors.tencent.com/todacc/venus-std-ext-cuda11.8-pytorch2.0-tf2.12-py3.10:0.7.0"
8
+
9
+ USER root
10
+ # 安装必须软件
11
+ # RUN GENERIC_REPO_URL="http://mirrors.tencent.com/repository/generic/venus_repo/image_res" \
12
+ # && cd /data/ \
13
+ # && wget -q $GENERIC_REPO_URL/gcc/gcc-11.2.0.zip \
14
+ # && unzip -q gcc-11.2.0.zip \
15
+ # && cd gcc-releases-gcc-11.2.0 \
16
+ # && ./contrib/download_prerequisites \
17
+ # && ./configure --enable-bootstrap --enable-languages=c,c++ --enable-threads=posix --enable-checking=release --enable-multilib --with-system-zlib \
18
+ # && make --silent -j10 \
19
+ # && make --silent install \
20
+ # && gcc -v \
21
+ # && rm -rf /data/gcc-releases-gcc-11.2.0 /data/gcc-11.2.0.zip
22
+
23
+ # RUN yum update -y \
24
+ # && yum install -y epel-release \
25
+ # && yum install -y ffmpeg \
26
+ # && yum install -y Xvfb \
27
+ # && yum install -y centos-release-scl devtoolset-11
28
+ RUN yum install -y wget zsh git curl tmux cmake htop iotop git-lfs zip \
29
+ && yum install -y autojump autojump-zsh portaudio portaudio-devel \
30
+ && yum clean all
31
+
32
+ USER mqq
33
+ RUN source ~/.bashrc \
34
+ && GENERIC_REPO_URL="http://mirrors.tencent.com/repository/generic/venus_repo/image_res" \
35
+ && conda deactivate \
36
+ # && conda remove -y -n env-2.7.18 --all \
37
+ # && conda remove -y -n env-3.6.8 --all \
38
+ # && conda remove -y -n env-3.7.7 --all \
39
+ # && conda remove -y -n env-3.8.8 --all \
40
+ # && conda remove -y -n env-3.9.2 --all \
41
+ # && conda remove -y -n env-novelai --all \
42
+ && conda create -n projectv python=3.10.6 -y \
43
+ && conda activate projectv \
44
+ && pip install venus-sdk -q -i https://mirrors.tencent.com/repository/pypi/tencent_pypi/simple \
45
+ --extra-index-url https://mirrors.tencent.com/pypi/simple/ \
46
+ && pip install tensorflow==2.12.0 tensorboard==2.12.0 \
47
+ && pip install torch==2.0.1+cu118 torchvision==0.15.2+cu118 -f https://mirror.sjtu.edu.cn/pytorch-wheels/torch_stable.html -i https://mirrors.bfsu.edu.cn/pypi/web/simple -U \
48
+ # 安装xformers,支持不同型号gpu
49
+ && pip install ninja==1.11.1 \
50
+ # && git clone https://github.com/facebookresearch/xformers.git \
51
+ # && cd xformers \
52
+ # && git checkout v0.0.17rc482 \
53
+ # && git submodule update --init --recursive \
54
+ # && pip install numpy==1.23.4 pyre-extensions==0.0.23 \
55
+ # && FORCE_CUDA="1" MAX_JOBS=1 TORCH_CUDA_ARCH_LIST="6.1;7.0;7.5;8.0;8.6" pip install -e . \
56
+ # && cd .. \
57
+ # 安装一堆包
58
+ && pip install --no-cache-dir transformers bitsandbytes decord accelerate xformers omegaconf einops imageio==2.31.1 \
59
+ && pip install --no-cache-dir pandas h5py matplotlib modelcards pynvml black pytest moviepy torch-tb-profiler scikit-learn librosa ffmpeg easydict webp controlnet_aux mediapipe \
60
+ && pip install --no-cache-dir Cython easydict gdown infomap insightface ipython librosa onnx onnxruntime onnxsim opencv_python Pillow protobuf pytube PyYAML \
61
+ && pip install --no-cache-dir requests scipy six tqdm gradio albumentations opencv-contrib-python imageio-ffmpeg pytorch-lightning test-tube \
62
+ && pip install --no-cache-dir timm addict yapf prettytable safetensors basicsr fvcore pycocotools wandb gunicorn \
63
+ && pip install --no-cache-dir streamlit webdataset kornia open_clip_torch streamlit-drawable-canvas torchmetrics \
64
+ # 安装暗水印
65
+ && pip install --no-cache-dir invisible-watermark==0.1.5 gdown==4.5.3 ftfy==6.1.1 modelcards==0.1.6 \
66
+ # 安装openmm相关包
67
+ && pip install--no-cache-dir -U openmim \
68
+ && mim install mmengine \
69
+ && mim install "mmcv>=2.0.1" \
70
+ && mim install "mmdet>=3.1.0" \
71
+ && mim install "mmpose>=1.1.0" \
72
+ # jupyters
73
+ && pip install ipywidgets==8.0.3 \
74
+ && python -m ipykernel install --user --name projectv --display-name "python(projectv)" \
75
+ && pip install --no-cache-dir matplotlib==3.6.2 redis==4.5.1 pydantic[dotenv]==1.10.2 loguru==0.6.0 IProgress==0.4 \
76
+ && pip install --no-cache-dir cos-python-sdk-v5==1.9.22 coscmd==1.8.6.30 \
77
+ # 必须放在最后pip,避免和jupyter的不兼容
78
+ && pip install --no-cache-dir markupsafe==2.0.1 \
79
+ && wget -P /tmp $GENERIC_REPO_URL/cpu/clean-layer.sh \
80
+ && sh /tmp/clean-layer.sh
81
+
82
+ ENV LD_LIBRARY_PATH=/usr/local/lib64:$LD_LIBRARY_PATH
83
+ USER root
MMCM/README.md ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ # MMCM
2
+ Process package for multi media, cross multi modal.
MMCM/requirements.txt ADDED
@@ -0,0 +1,291 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ absl-py==2.1.0
2
+ accelerate==0.22.0
3
+ addict==2.4.0
4
+ aiofiles==23.2.1
5
+ aiohttp==3.9.1
6
+ aiosignal==1.3.1
7
+ albumentations==1.3.1
8
+ aliyun-python-sdk-core==2.14.0
9
+ aliyun-python-sdk-kms==2.16.2
10
+ altair==5.2.0
11
+ antlr4-python3-runtime==4.9.3
12
+ anyio==4.2.0
13
+ appdirs==1.4.4
14
+ argparse==1.4.0
15
+ asttokens==2.4.1
16
+ astunparse==1.6.3
17
+ async-timeout==4.0.3
18
+ attrs==23.2.0
19
+ audioread==3.0.1
20
+ basicsr==1.4.2
21
+ beautifulsoup4==4.12.2
22
+ bitsandbytes==0.41.1
23
+ black==23.12.1
24
+ blinker==1.7.0
25
+ braceexpand==0.1.7
26
+ cachetools==5.3.2
27
+ certifi==2023.11.17
28
+ cffi==1.16.0
29
+ charset-normalizer==3.3.2
30
+ chumpy==0.70
31
+ click==8.1.7
32
+ cmake==3.28.1
33
+ colorama==0.4.6
34
+ coloredlogs==15.0.1
35
+ comm==0.2.1
36
+ contourpy==1.2.0
37
+ cos-python-sdk-v5==1.9.22
38
+ coscmd==1.8.6.30
39
+ crcmod==1.7
40
+ cryptography==41.0.7
41
+ cycler==0.12.1
42
+ cython==3.0.2
43
+ datetime==5.4
44
+ debugpy==1.8.0
45
+ decorator==4.4.2
46
+ decord==0.6.0
47
+ dill==0.3.7
48
+ docker-pycreds==0.4.0
49
+ dulwich==0.21.7
50
+ easydict==1.11
51
+ einops==0.7.0
52
+ exceptiongroup==1.2.0
53
+ executing==2.0.1
54
+ fastapi==0.109.0
55
+ ffmpeg==1.4
56
+ ffmpeg-python==0.2.0
57
+ ffmpy==0.3.1
58
+ filelock==3.13.1
59
+ flatbuffers==23.5.26
60
+ fonttools==4.47.2
61
+ frozenlist==1.4.1
62
+ fsspec==2023.12.2
63
+ ftfy==6.1.1
64
+ future==0.18.3
65
+ fuzzywuzzy==0.18.0
66
+ fvcore==0.1.5.post20221221
67
+ gast==0.4.0
68
+ gdown==4.5.3
69
+ gitdb==4.0.11
70
+ gitpython==3.1.41
71
+ google-auth==2.26.2
72
+ google-auth-oauthlib==0.4.6
73
+ google-pasta==0.2.0
74
+ gradio==3.43.2
75
+ gradio-client==0.5.0
76
+ grpcio==1.60.0
77
+ h11==0.14.0
78
+ h5py==3.10.0
79
+ httpcore==1.0.2
80
+ httpx==0.26.0
81
+ huggingface-hub==0.20.2
82
+ humanfriendly==10.0
83
+ idna==3.6
84
+ imageio==2.31.1
85
+ imageio-ffmpeg==0.4.8
86
+ importlib-metadata==7.0.1
87
+ importlib-resources==6.1.1
88
+ infomap==2.7.1
89
+ iniconfig==2.0.0
90
+ insightface==0.7.3
91
+ invisible-watermark==0.1.5
92
+ iopath==0.1.10
93
+ ip-adapter==0.1.0
94
+ iprogress==0.4
95
+ ipykernel==6.29.0
96
+ ipython==8.20.0
97
+ ipywidgets==8.0.3
98
+ jax==0.4.23
99
+ jedi==0.19.1
100
+ jinja2==3.1.3
101
+ jmespath==0.10.0
102
+ joblib==1.3.2
103
+ json-tricks==3.17.3
104
+ jsonschema==4.21.0
105
+ jsonschema-specifications==2023.12.1
106
+ jupyter-client==8.6.0
107
+ jupyter-core==5.7.1
108
+ jupyterlab-widgets==3.0.9
109
+ keras==2.12.0
110
+ kiwisolver==1.4.5
111
+ kornia==0.7.0
112
+ lazy-loader==0.3
113
+ libclang==16.0.6
114
+ librosa==0.10.1
115
+ lightning-utilities==0.10.0
116
+ lit==17.0.6
117
+ llvmlite==0.41.1
118
+ lmdb==1.4.1
119
+ loguru==0.6.0
120
+ markdown==3.5.2
121
+ markdown-it-py==3.0.0
122
+ markupsafe==2.0.1
123
+ matplotlib==3.6.2
124
+ matplotlib-inline==0.1.6
125
+ mdurl==0.1.2
126
+ mediapipe==0.10.3
127
+ ml-dtypes==0.3.2
128
+ mmcv==2.1.0
129
+ mmdet==3.2.0
130
+ mmengine==0.10.2
131
+ mmpose==1.3.1
132
+ model-index==0.1.11
133
+ modelcards==0.1.6
134
+ moviepy==1.0.3
135
+ mpmath==1.3.0
136
+ msgpack==1.0.7
137
+ multidict==6.0.4
138
+ munkres==1.1.4
139
+ mypy-extensions==1.0.0
140
+ nest-asyncio==1.5.9
141
+ networkx==3.2.1
142
+ ninja==1.11.1
143
+ numba==0.58.1
144
+ numpy==1.23.5
145
+ oauthlib==3.2.2
146
+ omegaconf==2.3.0
147
+ onnx==1.14.1
148
+ onnxruntime==1.15.1
149
+ onnxsim==0.4.33
150
+ open-clip-torch==2.20.0
151
+ opencv-contrib-python==4.8.0.76
152
+ opencv-python==4.9.0.80
153
+ opencv-python-headless==4.9.0.80
154
+ opendatalab==0.0.10
155
+ openmim==0.3.9
156
+ openxlab==0.0.34
157
+ opt-einsum==3.3.0
158
+ ordered-set==4.1.0
159
+ orjson==3.9.10
160
+ oss2==2.17.0
161
+ packaging==23.2
162
+ pandas==2.1.4
163
+ parso==0.8.3
164
+ pathspec==0.12.1
165
+ pathtools==0.1.2
166
+ pexpect==4.9.0
167
+ pillow==10.2.0
168
+ pip==23.3.1
169
+ platformdirs==4.1.0
170
+ pluggy==1.3.0
171
+ pooch==1.8.0
172
+ portalocker==2.8.2
173
+ prettytable==3.9.0
174
+ proglog==0.1.10
175
+ prompt-toolkit==3.0.43
176
+ protobuf==3.20.3
177
+ psutil==5.9.7
178
+ ptyprocess==0.7.0
179
+ pure-eval==0.2.2
180
+ pyarrow==14.0.2
181
+ pyasn1==0.5.1
182
+ pyasn1-modules==0.3.0
183
+ pycocotools==2.0.7
184
+ pycparser==2.21
185
+ pycryptodome==3.20.0
186
+ pydantic==1.10.2
187
+ pydeck==0.8.1b0
188
+ pydub==0.25.1
189
+ pygments==2.17.2
190
+ pynvml==11.5.0
191
+ pyparsing==3.1.1
192
+ pysocks==1.7.1
193
+ pytest==7.4.4
194
+ python-dateutil==2.8.2
195
+ python-dotenv==1.0.0
196
+ python-multipart==0.0.6
197
+ pytorch-lightning==2.0.8
198
+ pytube==15.0.0
199
+ pytz==2023.3.post1
200
+ pywavelets==1.5.0
201
+ pyyaml==6.0.1
202
+ pyzmq==25.1.2
203
+ qudida==0.0.4
204
+ redis==4.5.1
205
+ referencing==0.32.1
206
+ regex==2023.12.25
207
+ requests==2.28.2
208
+ requests-oauthlib==1.3.1
209
+ rich==13.4.2
210
+ rpds-py==0.17.1
211
+ rsa==4.9
212
+ safetensors==0.3.3
213
+ scikit-image==0.22.0
214
+ scikit-learn==1.3.2
215
+ scipy==1.11.4
216
+ semantic-version==2.10.0
217
+ sentencepiece==0.1.99
218
+ sentry-sdk==1.39.2
219
+ setproctitle==1.3.3
220
+ setuptools==60.2.0
221
+ shapely==2.0.2
222
+ six==1.16.0
223
+ smmap==5.0.1
224
+ sniffio==1.3.0
225
+ sounddevice==0.4.6
226
+ soundfile==0.12.1
227
+ soupsieve==2.5
228
+ soxr==0.3.7
229
+ stack-data==0.6.3
230
+ starlette==0.35.1
231
+ streamlit==1.30.0
232
+ streamlit-drawable-canvas==0.9.3
233
+ sympy==1.12
234
+ tabulate==0.9.0
235
+ tb-nightly==2.11.0a20220906
236
+ tenacity==8.2.3
237
+ tensorboard==2.12.0
238
+ tensorboard-data-server==0.6.1
239
+ tensorboard-plugin-wit==1.8.1
240
+ tensorflow==2.12.0
241
+ tensorflow-estimator==2.12.0
242
+ tensorflow-io-gcs-filesystem==0.35.0
243
+ termcolor==2.4.0
244
+ terminaltables==3.1.10
245
+ test-tube==0.7.5
246
+ threadpoolctl==3.2.0
247
+ tifffile==2023.12.9
248
+ timm==0.9.12
249
+ tokenizers==0.13.3
250
+ toml==0.10.2
251
+ tomli==2.0.1
252
+ toolz==0.12.0
253
+ torch==2.0.1+cu118
254
+ torch-tb-profiler==0.4.1
255
+ torchmetrics==1.1.1
256
+ torchvision==0.15.2+cu118
257
+ tornado==6.4
258
+ tqdm==4.65.2
259
+ traitlets==5.14.1
260
+ transformers==4.33.1
261
+ triton==2.0.0
262
+ typing-extensions==4.9.0
263
+ tzdata==2023.4
264
+ tzlocal==5.2
265
+ urllib3==1.26.18
266
+ urwid==2.4.2
267
+ uvicorn==0.26.0
268
+ validators==0.22.0
269
+ wandb==0.15.10
270
+ watchdog==3.0.0
271
+ wcwidth==0.2.13
272
+ webdataset==0.2.86
273
+ webp==0.3.0
274
+ websockets==11.0.3
275
+ werkzeug==3.0.1
276
+ wget==3.2
277
+ wheel==0.41.2
278
+ widgetsnbextension==4.0.9
279
+ wrapt==1.14.1
280
+ xformers==0.0.21
281
+ xmltodict==0.13.0
282
+ xtcocotools==1.14.3
283
+ yacs==0.1.8
284
+ yapf==0.40.2
285
+ yarl==1.9.4
286
+ zipp==3.17.0
287
+ zope-interface==6.1
288
+ fire==0.6.0
289
+ xlsxwriter
290
+ git+https://github.com/tencent-ailab/IP-Adapter.git@main
291
+ git+https://github.com/openai/CLIP.git
MMCM/setup.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ from setuptools import setup, find_packages
4
+
5
+ with open("README.md", "r") as fh:
6
+ long_description = fh.read()
7
+
8
+ setup(
9
+ name="mmcm", # used in pip install
10
+ version="1.0.0",
11
+ author="anchorxia",
12
+ author_email="anchorxia@tencent.com",
13
+ description="process package for multi media cross modal",
14
+ # long_description=long_description,
15
+ # long_description_content_type="text/markdown",
16
+ url="https://github.com/TMElyralab/MMCM",
17
+ # include_package_data=True, # please edit MANIFEST.in
18
+ packages=find_packages(), # used in import
19
+ classifiers=[
20
+ "Programming Language :: Python :: 3",
21
+ "License :: OSI Approved :: MIT License",
22
+ "Operating System :: OS Independent",
23
+ ],
24
+ install_requires=[],
25
+ )
README-zh.md ADDED
@@ -0,0 +1,545 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # MuseV [English](README.md) [中文](README-zh.md)
2
+
3
+ <font size=5>MuseV:基于视觉条件并行去噪的无限长度和高保真虚拟人视频生成。
4
+ </br>
5
+ Zhiqiang Xia <sup>\*</sup>,
6
+ Zhaokang Chen<sup>\*</sup>,
7
+ Bin Wu<sup>†</sup>,
8
+ Chao Li,
9
+ Kwok-Wai Hung,
10
+ Chao Zhan,
11
+ Yingjie He,
12
+ Wenjiang Zhou
13
+ (<sup>*</sup>co-first author, <sup>†</sup>Corresponding Author, benbinwu@tencent.com)
14
+ </font>
15
+
16
+ **[github](https://github.com/TMElyralab/MuseV)** **[huggingface](https://huggingface.co/TMElyralab/MuseV)** **[HuggingfaceSpace](https://huggingface.co/spaces/AnchorFake/MuseVDemo)** **[project](comming soon)** **Technical report (comming soon)**
17
+
18
+
19
+ 我们在2023年3月相信扩散模型可以模拟世界,也开始基于扩散模型研发世界视觉模拟器。`MuseV`是在 2023 年 7 月左右实现的一个里程碑。受到 Sora 进展的启发,我们决定开源 MuseV。MuseV 站在开源的肩膀上成长,也希望能够借此反馈社区。接下来,我们将转向有前景的扩散+变换器方案。
20
+
21
+ 我们已经发布 <a href="https://github.com/TMElyralab/MuseTalk" style="font-size:24px; color:red;">MuseTalk</a>. `MuseTalk`是一个实时高质量的唇同步模型,可与 `MuseV` 一起构建完整的`虚拟人生成解决方案`。请保持关注!
22
+
23
+ # 概述
24
+
25
+ `MuseV` 是基于扩散模型的虚拟人视频生成框架,具有以下特点:
26
+
27
+ 1. 支持使用新颖的视觉条件并行去噪方案进行无限长度生成,不会再有误差累计的问题,尤其适用于固定相机位的场景。
28
+ 1. 提供了基于人物类型数据集训练的虚拟人视频生成预训练模型。
29
+ 1. 支持图像到视频、文本到图像到视频、视频到视频的生成。
30
+ 1. 兼容 `Stable Diffusio`n 文图生成生态系统,包括 `base_model`、`lora`、`controlnet` 等。
31
+ 1. 支持多参考图像技术,包括 `IPAdapter`、`ReferenceOnly`、`ReferenceNet`、`IPAdapterFaceID`。
32
+ 1. 我们后面也会推出训练代码。
33
+
34
+ # 重要更新
35
+ 1. `musev_referencenet_pose`: `unet`, `ip_adapter` 的模型名字指定错误,请使用 `musev_referencenet_pose`而不是`musev_referencenet`,请使用最新的main分支。
36
+
37
+ # 进展
38
+ - [2024年3月27日] 发布 `MuseV` 项目和训练好的模型 `musev`、`muse_referencenet`、`muse_referencenet_pose`。
39
+ - [03/30/2024] 在 huggingface space 上新增 [gui](https://huggingface.co/spaces/AnchorFake/MuseVDemo) 交互方式来生成视频.
40
+
41
+ ## 模型
42
+ ### 模型结构示意图
43
+ ![model_structure](./data/models/musev_structure.png)
44
+ ### 并行去噪算法示意图
45
+ ![parallel_denoise](./data//models/parallel_denoise.png)
46
+
47
+ ## 测试用例
48
+ 生成结果的所有帧直接由`MuseV`生成,没有时序超分辨、空间超分辨等任何后处理。
49
+ <!-- # TODO: // use youtu video link? -->
50
+ 以下所有测试用例都维护在 `configs/tasks/example.yaml`,可以直接运行复现。
51
+
52
+ ### 输入文本、图像的视频生成
53
+ #### 人类
54
+ <table class="center">
55
+ <tr style="font-weight: bolder;text-align:center;">
56
+ <td width="50%">image</td>
57
+ <td width="45%">video </td>
58
+ <td width="5%">prompt</td>
59
+ </tr>
60
+
61
+ <tr>
62
+ <td>
63
+ <img src=./data/images/yongen.jpeg width="400">
64
+ </td>
65
+ <td >
66
+ <video src="https://github.com/TMElyralab/MuseV/assets/163980830/732cf1fd-25e7-494e-b462-969c9425d277" width="100" controls preload></video>
67
+ </td>
68
+ <td>(masterpiece, best quality, highres:1),(1girl, solo:1),(beautiful face,
69
+ soft skin, costume:1),(eye blinks:{eye_blinks_factor}),(head wave:1.3)
70
+ </td>
71
+ </tr>
72
+
73
+ <tr>
74
+ <td>
75
+ <img src=./data/images/jinkesi2.jpeg width="400">
76
+ </td>
77
+ <td>
78
+ <video src="https://github.com/TMElyralab/MuseV/assets/163980830/62b533d3-95f3-48db-889d-75dde1ad04b7" width="100" controls preload></video>
79
+ </td>
80
+ <td>
81
+ (masterpiece, best quality, highres:1),(1girl, solo:1),(beautiful face,
82
+ soft skin, costume:1),(eye blinks:{eye_blinks_factor}),(head wave:1.3)
83
+ </td>
84
+ </tr>
85
+
86
+ <tr>
87
+ <td>
88
+ <img src=./data/images/seaside4.jpeg width="400">
89
+ </td>
90
+ <td>
91
+ <video src="https://github.com/TMElyralab/MuseV/assets/163980830/9b75a46c-f4e6-45ef-ad02-05729f091c8f" width="100" controls preload></video>
92
+ </td>
93
+ <td>
94
+ (masterpiece, best quality, highres:1), peaceful beautiful sea scene
95
+ </td>
96
+ </tr>
97
+ <tr>
98
+ <td>
99
+ <img src=./data/images/seaside_girl.jpeg width="400">
100
+ </td>
101
+ <td>
102
+ <video src="https://github.com/TMElyralab/MuseV/assets/163980830/d0f3b401-09bf-4018-81c3-569ec24a4de9" width="100" controls preload></video>
103
+ </td>
104
+ <td>
105
+ (masterpiece, best quality, highres:1), peaceful beautiful sea scene
106
+ </td>
107
+ </tr>
108
+ <!-- guitar -->
109
+ <tr>
110
+ <td>
111
+ <img src=./data/images/boy_play_guitar.jpeg width="400">
112
+ </td>
113
+ <td>
114
+ <video src="https://github.com/TMElyralab/MuseV/assets/163980830/61bf955e-7161-44c8-a498-8811c4f4eb4f" width="100" controls preload></video>
115
+ </td>
116
+ <td>
117
+ (masterpiece, best quality, highres:1), playing guitar
118
+ </td>
119
+ </tr>
120
+ <tr>
121
+ <td>
122
+ <img src=./data/images/girl_play_guitar2.jpeg width="400">
123
+ </td>
124
+ <td>
125
+ <video src="https://github.com/TMElyralab/MuseV/assets/163980830/40982aa7-9f6a-4e44-8ef6-3f185d284e6a" width="100" controls preload></video>
126
+ </td>
127
+ <td>
128
+ (masterpiece, best quality, highres:1), playing guitar
129
+ </td>
130
+ </tr>
131
+ <tr>
132
+ <td>
133
+ <img src=./data/images/boy_play_guitar2.jpeg width="400">
134
+ </td>
135
+ <td>
136
+ <video src="https://github.com/TMElyralab/MuseV/assets/163980830/69ea9d0c-5ed0-44b9-bca9-a4829c8d8b68" width="100" controls preload></video>
137
+ </td>
138
+ <td>
139
+ (masterpiece, best quality, highres:1), playing guitar
140
+ </td>
141
+ </tr>
142
+ <tr>
143
+ <td>
144
+ <img src=./data/images/girl_play_guitar4.jpeg width="400">
145
+ </td>
146
+ <td>
147
+ <video src="https://github.com/TMElyralab/MuseV/assets/163980830/d242e8a4-08ab-474f-b4a8-b718780d2991" width="100" controls preload></video>
148
+ </td>
149
+ <td>
150
+ (masterpiece, best quality, highres:1), playing guitar
151
+ </td>
152
+ </tr>
153
+ <!-- famous people -->
154
+ <tr>
155
+ <td>
156
+ <img src=./data/images/dufu.jpeg width="400">
157
+ </td>
158
+ <td>
159
+ <video src="https://github.com/TMElyralab/MuseV/assets/163980830/28294baa-b996-420f-b1fb-046542adf87d" width="100" controls preload></video>
160
+ </td>
161
+ <td>
162
+ (masterpiece, best quality, highres:1),(1man, solo:1),(beautiful face,
163
+ soft skin, costume:1),(eye blinks:{eye_blinks_factor}),(head wave:1.3)
164
+ </td>
165
+ </tr>
166
+
167
+ <tr>
168
+ <td>
169
+ <img src=./data/images/Mona_Lisa.jpg width="400">
170
+ </td>
171
+ <td>
172
+ <video src="https://github.com/TMElyralab/MuseV/assets/163980830/1ce11da6-14c6-4dcd-b7f9-7a5f060d71fb" width="100" controls preload></video>
173
+ </td>
174
+ <td>
175
+ (masterpiece, best quality, highres:1),(1girl, solo:1),(beautiful face,
176
+ soft skin, costume:1),(eye blinks:{eye_blinks_factor}),(head wave:1.3)
177
+ </td>
178
+ </tr>
179
+ <tr>
180
+ <td>
181
+ <img src=./data/images/Portrait-of-Dr.-Gachet.jpg width="400">
182
+ </td>
183
+ <td>
184
+ <video src="https://github.com/TMElyralab/MuseV/assets/163980830/4072410a-ecea-4ee5-a9b4-735f9f462d51" width="100" controls preload></video>
185
+ </td>
186
+ <td>
187
+ (masterpiece, best quality, highres:1),(1man, solo:1),(beautiful face,
188
+ soft skin, costume:1),(eye blinks:{eye_blinks_factor}),(head wave:1.3)
189
+ </td>
190
+ </tr>
191
+ <tr>
192
+ <td>
193
+ <img src=./data/images/Self-Portrait-with-Cropped-Hair.jpg width="400">
194
+ </td>
195
+ <td>
196
+ <video src="https://github.com/TMElyralab/MuseV/assets/163980830/5148beda-a1e1-44f0-ad84-2fb99ad73a11" width="100" controls preload></video>
197
+ </td>
198
+ <td>
199
+ (masterpiece, best quality, highres:1),(1girl, solo:1),(beautiful face,
200
+ soft skin, costume:1),(eye blinks:{eye_blinks_factor}),(head wave:1.3)
201
+ </td>
202
+ </tr>
203
+ <tr>
204
+ <td>
205
+ <img src=./data/images/The-Laughing-Cavalier.jpg width="400">
206
+ </td>
207
+ <td>
208
+ <video src="https://github.com/TMElyralab/MuseV/assets/163980830/df1c5943-15a3-41f5-afe7-e7497c81836d" width="100" controls preload></video>
209
+ </td>
210
+ <td>
211
+ (masterpiece, best quality, highres:1),(1girl, solo:1),(beautiful face,
212
+ soft skin, costume:1),(eye blinks:{eye_blinks_factor}),(head wave:1.3)
213
+ </td>
214
+ </tr>
215
+ </table >
216
+
217
+ #### 场景
218
+ <table class="center">
219
+ <tr style="font-weight: bolder;text-align:center;">
220
+ <td width="35%">image</td>
221
+ <td width="50%">video</td>
222
+ <td width="15%">prompt</td>
223
+ </tr>
224
+
225
+ <tr>
226
+ <td>
227
+ <img src=./data/images/waterfall4.jpeg width="400">
228
+ </td>
229
+ <td>
230
+ <video src="https://github.com/TMElyralab/MuseV/assets/163980830/852daeb6-6b58-4931-81f9-0dddfa1b4ea5" width="100" controls preload></video>
231
+ </td>
232
+ <td>
233
+ (masterpiece, best quality, highres:1), peaceful beautiful waterfall, an
234
+ endless waterfall
235
+ </td>
236
+ </tr>
237
+
238
+ <tr>
239
+ <td>
240
+ <img src=./data/images/river.jpeg width="400">
241
+ </td>
242
+ <td>
243
+ <video src="https://github.com/TMElyralab/MuseV/assets/163980830/d5cb2798-b5ce-497a-a058-ae63d664028e" width="100" controls preload></video>
244
+ </td>
245
+ <td>(masterpiece, best quality, highres:1), peaceful beautiful river
246
+ </td>
247
+ </tr>
248
+
249
+ <tr>
250
+ <td>
251
+ <img src=./data/images/seaside2.jpeg width="400">
252
+ </td>
253
+ <td>
254
+ <video src="https://github.com/TMElyralab/MuseV/assets/163980830/4a4d527a-6203-411f-afe9-31c992d26816" width="100" controls preload></video>
255
+ </td>
256
+ <td>(masterpiece, best quality, highres:1), peaceful beautiful sea scene
257
+ </td>
258
+ </tr>
259
+ </table >
260
+
261
+ ### 输入视频条件的视频生成
262
+ 当前生成模式下,需要参考视频的首帧条件和参考图像的首帧条件对齐,不然会破坏首帧的信息,效果会更差。所以一般生成流程是
263
+ 1. 确定参考视频;
264
+ 2. 用参考视频的首帧走图生图、controlnet流程,可以使用`MJ`等各种平台;
265
+ 3. 拿2中的生成图、参考视频用MuseV生成视频;
266
+ 4.
267
+ **pose2video**
268
+
269
+ `duffy` 的测试用例中,视觉条件帧的姿势与控制视频的第一帧不对齐。需要`posealign` 将解决这个问题。
270
+
271
+ <table class="center">
272
+ <tr style="font-weight: bolder;text-align:center;">
273
+ <td width="25%">image</td>
274
+ <td width="65%">video</td>
275
+ <td width="10%">prompt</td>
276
+ </tr>
277
+ <tr>
278
+ <td>
279
+ <img src=./data/images/spark_girl.png width="200">
280
+ <img src=./data/images/cyber_girl.png width="200">
281
+ </td>
282
+ <td>
283
+ <video src="https://github.com/TMElyralab/MuseV/assets/163980830/484cc69d-c316-4464-a55b-3df929780a8e" width="400" controls preload></video>
284
+ </td>
285
+ <td>
286
+ (masterpiece, best quality, highres:1)
287
+ </td>
288
+ </tr>
289
+ <tr>
290
+ <td>
291
+ <img src=./data/images/duffy.png width="400">
292
+ </td>
293
+ <td>
294
+ <video src="https://github.com/TMElyralab/MuseV/assets/163980830/c44682e6-aafc-4730-8fc1-72825c1bacf2" width="400" controls preload></video>
295
+ </td>
296
+ <td>
297
+ (masterpiece, best quality, highres:1)
298
+ </td>
299
+ </tr>
300
+ </table >
301
+
302
+ ### MuseTalk
303
+
304
+ `talk`的角色`孙昕荧`著名的网络大V,可以在 [抖音](https://www.douyin.com/user/MS4wLjABAAAAWDThbMPN_6Xmm_JgXexbOii1K-httbu2APdG8DvDyM8) 关注。
305
+
306
+ <table class="center">
307
+ <tr style="font-weight: bolder;">
308
+ <td width="35%">name</td>
309
+ <td width="50%">video</td>
310
+ </tr>
311
+
312
+ <tr>
313
+ <td>
314
+ talk
315
+ </td>
316
+ <td>
317
+ <video src="https://github.com/TMElyralab/MuseV/assets/163980830/951188d1-4731-4e7f-bf40-03cacba17f2f" width="100" controls preload></video>
318
+ </td>
319
+ </tr>
320
+ <tr>
321
+ <td>
322
+ talk
323
+ </td>
324
+ <td>
325
+ <video src="https://github.com/TMElyralab/MuseV/assets/163980830/ba0396ab-8aba-4440-803c-18b078ae1dd9" width="100" controls preload></video>
326
+ </td>
327
+ </tr>
328
+ <tr>
329
+ <td>
330
+ sing
331
+ </td>
332
+ <td>
333
+ <video src="https://github.com/TMElyralab/MuseV/assets/163980830/50b8ffab-9307-4836-99e5-947e6ce7d112" width="100" controls preload></video>
334
+ </td>
335
+ </tr>
336
+ </table >
337
+
338
+
339
+ # 待办事项:
340
+ - [ ] 技术报告(即将推出)。
341
+ - [ ] 训练代码。
342
+ - [ ] 扩散变换生成框架。
343
+ - [ ] `posealign` 模块。
344
+
345
+ # 快速入门
346
+ 准备 Python 环境并安装额外的包,如 `diffusers`、`controlnet_aux`、`mmcm`。
347
+
348
+ ## 准备环境
349
+ 建议您优先使用 `docker` 来准备 Python 环境。
350
+
351
+ ### 准备 Python 环境
352
+ **注意**:我们只测试了 Docker,使用 conda 或其他环境可能会遇到问题。我们将尽力解决。但依然请优先使用 `docker`。
353
+
354
+ #### 方法 1:使用 Docker
355
+ 1. 拉取 Docker 镜像
356
+ ```bash
357
+ docker pull anchorxia/musev:latest
358
+ ```
359
+ 2. 运行 Docker 容器
360
+ ```bash
361
+ docker run --gpus all -it --entrypoint /bin/bash anchorxia/musev:latest
362
+ ```
363
+ docker启动后默认的 conda 环境是 `musev`。
364
+
365
+ #### 方法 2:使用 conda
366
+ 从 environment.yaml 创建 conda 环境
367
+ ```
368
+ conda env create --name musev --file ./environment.yml
369
+ ```
370
+ #### 方法 3:使用 pip requirements
371
+ ```
372
+ pip install -r requirements.txt
373
+ ```
374
+ #### 准备 [openmmlab](https://openmmlab.com/) 包
375
+ 如果不使用 Docker方式,还需要额外安装 mmlab 包。
376
+ ```bash
377
+ pip install--no-cache-dir -U openmim
378
+ mim install mmengine
379
+ mim install "mmcv>=2.0.1"
380
+ mim install "mmdet>=3.1.0"
381
+ mim install "mmpose>=1.1.0"
382
+ ```
383
+
384
+ ### 准备我们开发的包
385
+ #### 下载
386
+ ```bash
387
+ git clone --recursive https://github.com/TMElyralab/MuseV.git
388
+ ```
389
+ #### 准备 PYTHONPATH
390
+ ```bash
391
+ current_dir=$(pwd)
392
+ export PYTHONPATH=${PYTHONPATH}:${current_dir}/MuseV
393
+ export PYTHONPATH=${PYTHONPATH}:${current_dir}/MuseV/MMCM
394
+ export PYTHONPATH=${PYTHONPATH}:${current_dir}/MuseV/diffusers/src
395
+ export PYTHONPATH=${PYTHONPATH}:${current_dir}/MuseV/controlnet_aux/src
396
+ cd MuseV
397
+ ```
398
+
399
+ 1. `MMCM`:多媒体、跨模态处理包。
400
+ 1. `diffusers`:基于 [diffusers](https://github.com/huggingface/diffusers) 修改的 diffusers 包。
401
+ 1. `controlnet_aux`:基于 [controlnet_aux](https://github.com/TMElyralab/controlnet_aux) 修改的包。
402
+
403
+
404
+ ## 下载模型
405
+ ```bash
406
+ git clone https://huggingface.co/TMElyralab/MuseV ./checkpoints
407
+ ```
408
+ - `motion`:多个版本的视频生成模型。使用小数据集 `ucf101` 和小 `webvid` 数据子集进行训练,约 60K 个视频文本对。GPU 内存消耗测试在 `resolution` $=512*512,`time_size=12`。
409
+ - `musev/unet`:这个版本 仅训练 `unet` 运动模块。推断 `GPU 内存消耗` $\approx 8G$。
410
+ - `musev_referencenet`:这个版本训练 `unet` 运动模块、`referencenet`、`IPAdapter`。推断 `GPU 内存消耗` $\approx 12G$。
411
+ - `unet`:`motion` 模块,具有 `Attention` 层中的 `to_k`、`to_v`,参考 `IPAdapter`。
412
+ - `referencenet`:类似于 `AnimateAnyone`。
413
+ - `ip_adapter_image_proj.bin`:图像特征变换层,参考 `IPAdapter`。
414
+ - `musev_referencenet_pose`:这个版本基于 `musev_referencenet`,固定 `referencenet` 和 `controlnet_pose`,训练 `unet motion` 和 `IPAdapter`。推断 `GPU 内存消���` $\approx 12G$。
415
+ - `t2i/sd1.5`:text2image 模型,在训练运动模块时参数被冻结。
416
+ - majicmixRealv6Fp16:示例,可以替换为其他 t2i 基础。从 [majicmixRealv6Fp16](https://civitai.com/models/43331/majicmix-realistic) 下载。
417
+ - `IP-Adapter/models`:从 [IPAdapter](https://huggingface.co/h94/IP-Adapter/tree/main) 下载。
418
+ - `image_encoder`:视觉特征抽取模型。
419
+ - `ip-adapter_sd15.bin`:原始 IPAdapter 模型预训练权重。
420
+ - `ip-adapter-faceid_sd15.bin`:原始 IPAdapter 模型预训练权重。
421
+
422
+ ## 推理
423
+
424
+ ### 准备模型路径
425
+ 当使用示例推断命令运行示例任务时,可以跳过此步骤。
426
+ 该模块主要是在配置文件中设置模型路径和缩写,以在推断脚本中使用简单缩写而不是完整路径。
427
+ - T2I SD:参考 `musev/configs/model/T2I_all_model.py`
428
+ - 运动 Unet:参考 `musev/configs/model/motion_model.py`
429
+ - 任务:参考 `musev/configs/tasks/example.yaml`
430
+
431
+ ### musev_referencenet
432
+ #### 输入文本、图像的视频生成
433
+ ```bash
434
+ python scripts/inference/text2video.py --sd_model_name majicmixRealv6Fp16 --unet_model_name musev_referencenet --referencenet_model_name musev_referencenet --ip_adapter_model_name musev_referencenet -test_data_path ./configs/tasks/example.yaml --output_dir ./output --n_batch 1 --target_datas yongen --vision_clip_extractor_class_name ImageClipVisionFeatureExtractor --vision_clip_model_path ./checkpoints/IP-Adapter/models/image_encoder --time_size 12 --fps 12
435
+ ```
436
+ **通用参数**:
437
+ - `test_data_path`:测试用例 任务路径
438
+ - `target_datas`:如果 `test_data_path` 中的 `name` 在 `target_datas` 中,则只运行这些子任务。`sep` 是 `,`;
439
+ - `sd_model_cfg_path`:T2I sd 模型路径,模型配置路径或模型路径。
440
+ - `sd_model_name`:sd 模型名称,用于在 `sd_model_cfg_path` 中选择完整模型路径。使用 `,` 分隔的多个模型名称,或 `all`。
441
+ - `unet_model_cfg_path`:运动 unet 模型配置路径或模型路径。
442
+ - `unet_model_name`:unet 模型名称,用于获取 `unet_model_cfg_path` 中的模型路径,并在 `musev/models/unet_loader.py` 中初始化 unet 类实例。使用 `,` 分隔的多个模型名称,或 `all`。如果 `unet_model_cfg_path` 是模型路径,则 `unet_name` 必须在 `musev/models/unet_loader.py` 中支持。
443
+ - `time_size`:扩散模型每次生成一个片段,这里是一个片段的帧数。默认为 `12`。
444
+ - `n_batch`:首尾相连方式生成总片段数,$total\_frames=n\_batch * time\_size + n\_viscond$,默认为 `1`。
445
+ - `context_frames`: 并行去噪子窗口一次生成的帧数。如果 `time_size` > `context_frame`,则会启动并行去噪逻辑, `time_size` 窗口会分成多个子窗口进行并行去噪。默认为 `12`。
446
+
447
+ 生成长视频,有两种方法,可以共同使用:
448
+ 1. `视觉条件并行去噪`:设置 `n_batch=1`,`time_size` = 想要的所有帧。
449
+ 2. `传统的首尾相连方式`:设置 `time_size` = `context_frames` = 一次片段的帧数 (`12`),`context_overlap` = 0。会首尾相连方式生成`n_batch`片段数,首尾相连存在误差累计,当`n_batch`越大,最后的结果越差。
450
+
451
+
452
+ **模型参数**:
453
+ 支持 `referencenet`、`IPAdapter`、`IPAdapterFaceID`、`Facein`。
454
+ - `referencenet_model_name`:`referencenet` 模型名称。
455
+ - `ImageClipVisionFeatureExtractor`:`ImageEmbExtractor` 名称,在 `IPAdapter` 中提取视觉特征。
456
+ - `vision_clip_model_path`:`ImageClipVisionFeatureExtractor` 模型路径。
457
+ - `ip_adapter_model_name`:来自 `IPAdapter` 的,它是 `ImagePromptEmbProj`,与 `ImageEmbExtractor` 一起使用。
458
+ - `ip_adapter_face_model_name`:`IPAdapterFaceID`,来自 `IPAdapter`,应该设置 `face_image_path`。
459
+
460
+ **一些影响运动范围和生成结果的参数**:
461
+ - `video_guidance_scale`:类似于 text2image,控制 cond 和 uncond 之间的影响,影响较大,默认为 `3.5`。
462
+ - `guidance_scale`:在第一帧图像中 cond 和 uncond 之间的参数比例,,影响不大,默认为 `3.5`。
463
+ - `use_condition_image`:是否使用给定的第一帧进行视频生成。
464
+ - `redraw_condition_image`:是否重新绘制给定的第一帧图像。
465
+ - `video_negative_prompt`:配置文件中全 `negative_prompt` 的缩写。默认为 `V2`。
466
+
467
+
468
+ #### 输入视频的视频生成
469
+ ```bash
470
+ python scripts/inference/video2video.py --sd_model_name majicmixRealv6Fp16 --unet_model_name musev_referencenet --referencenet_model_name musev_referencenet --ip_adapter_model_name musev_referencenet -test_data_path ./configs/tasks/example.yaml --vision_clip_extractor_class_name ImageClipVisionFeatureExtractor --vision_clip_model_path ./checkpoints/IP-Adapter/models/image_encoder --output_dir ./output --n_batch 1 --controlnet_name dwpose_body_hand --which2video "video_middle" --target_datas dacne1 --fps 12 --time_size 12
471
+ ```
472
+ **一些重要参数**
473
+
474
+ 大多数参数与 `musev_text2video` 相同。`video2video` 的特殊参数有:
475
+ 1. 需要在 `test_data` 中设置 `video_path`。现在支持 `rgb video` 和 `controlnet_middle_video`。
476
+ - `which2video`: 参与引导视频视频的参考视频部分。 如果是 `video_middle`,则只使用类似`pose`、`depth`的 `video_middle`,如果是 `video`, 视频本身会参与视频噪声初始化。等价于`img2imge`。
477
+ - `controlnet_name`:是否使用 `controlnet condition`,例如 `dwpose,depth`, pose的话 优先建议使用`dwpose_body_hand`。
478
+ - `video_is_middle`:`video_path` 是 `rgb video` 还是 `controlnet_middle_video`。可以为 `test_data_path` 中的每个 `test_data` 设置。
479
+ - `video_has_condition`:condtion_images 是否与 video_path 的第一帧对齐。如果不是,则首先生成 `condition_images`,然后与拼接对齐。设置在 `test_data` 中。
480
+
481
+ 所有 `controlnet_names` 维护在 [mmcm](https://github.com/TMElyralab/MMCM/blob/main/mmcm/vision/feature_extractor/controlnet.py#L513)
482
+ ```python
483
+ ['pose', 'pose_body', 'pose_hand', 'pose_face', 'pose_hand_body', 'pose_hand_face', 'dwpose', 'dwpose_face', 'dwpose_hand', 'dwpose_body', 'dwpose_body_hand', 'canny', 'tile', 'hed', 'hed_scribble', 'depth', 'pidi', 'normal_bae', 'lineart', 'lineart_anime', 'zoe', 'sam', 'mobile_sam', 'leres', 'content', 'face_detector']
484
+ ```
485
+
486
+ ### musev_referencenet_pose
487
+ 仅用于 `pose2video`
488
+ 基于 `musev_referencenet` 训练,固定 `referencenet`、`pose-controlnet` 和 `T2I`,训练 `motion` 模块和 `IPAdapter`。
489
+ ```bash
490
+ python scripts/inference/video2video.py --sd_model_name majicmixRealv6Fp16 --unet_model_name musev_referencenet_pose --referencenet_model_name musev_referencenet --ip_adapter_model_name musev_referencenet_pose -test_data_path ./configs/tasks/example.yaml --vision_clip_extractor_class_name ImageClipVisionFeatureExtractor --vision_clip_model_path ./checkpoints/IP-Adapter/models/image_encoder --output_dir ./output --n_batch 1 --controlnet_name dwpose_body_hand --which2video "video_middle" --target_datas dacne1 --fps 12 --time_size 12
491
+ ```
492
+
493
+ ### musev
494
+ 仅有动作模块,没有 referencenet,需要更少的 GPU 内存。
495
+ #### 文本到视频
496
+ ```bash
497
+ python scripts/inference/text2video.py --sd_model_name majicmixRealv6Fp16 --unet_model_name musev -test_data_path ./configs/tasks/example.yaml --output_dir ./output --n_batch 1 --target_datas yongen --time_size 12 --fps 12
498
+ ```
499
+ #### 视频到视频
500
+ ```bash
501
+ python scripts/inference/video2video.py --sd_model_name majicmixRealv6Fp16 --unet_model_name musev -test_data_path ./configs/tasks/example.yaml --output_dir ./output --n_batch 1 --controlnet_name dwpose_body_hand --which2video "video_middle" --target_datas dacne1 --fps 12 --time_size 12
502
+ ```
503
+
504
+ ### Gradio 演示
505
+ MuseV 提供 gradio 脚本,可在本地机器上生成 GUI,方便生成视频。
506
+
507
+ ```bash
508
+ cd scripts/gradio
509
+ python app.py
510
+ ```
511
+
512
+ # 致谢
513
+ 1. MuseV 开发过程中参考学习了很多开源工作 [TuneAVideo](https://github.com/showlab/Tune-A-Video)、[diffusers](https://github.com/huggingface/diffusers)、[Moore-AnimateAnyone](https://github.com/MooreThreads/Moore-AnimateAnyone/tree/master/src/pipelines)、[animatediff](https://github.com/guoyww/AnimateDiff)、[IP-Adapter](https://github.com/tencent-ailab/IP-Adapter)、[AnimateAnyone](https://arxiv.org/abs/2311.17117)、[VideoFusion](https://arxiv.org/abs/2303.08320) 和 [insightface](https://github.com/deepinsight/insightface)。
514
+ 2. MuseV 基于 `ucf101` 和 `webvid` 数据集构建。
515
+
516
+ 感谢开源社区的贡献!
517
+
518
+ # 限制
519
+
520
+ `MuseV` 仍然存在很多待优化项,包括:
521
+
522
+ 1. 缺乏泛化能力。对视觉条件帧敏感,有些视觉条件图像表现良好,有些表现不佳。有些预训练的 t2i 模型表现良好,有些表现不佳。
523
+ 1. 有限的视频生成类型和有限的动作范围,部分原因是训练数据类型有限。发布的 `MuseV` 已经在大约 6 万对分辨率为 `512*320` 的人类文本视频对上进行了训练。`MuseV` 在较低分辨率下具有更大的动作范围,但视频质量较低。`MuseV` 在高分辨率下画质很好、但动作范围较小。在更大、更高分辨率、更高质量的文本视频数据集上进行训练可能会使 `MuseV` 更好。
524
+ 1. 因为使用 `webvid` 训练会有水印问题。使用没有水印的、更干净的数据集可能会解决这个问题。
525
+ 1. 有限类型的长视频生成。视觉条件并行去噪可以解决视频生成的累积误差,但当前的方法只适用于相对固定的摄像机场景。
526
+ 1. referencenet 和 IP-Adapter 训练不足,因为时间有限和资源有限。
527
+ 1. 代码结构不够完善。`MuseV` 支持丰富而动态的功能,但代码复杂且未经过重构。熟悉需要时间。
528
+
529
+
530
+ <!-- # Contribution 暂时不需要组织开源共建 -->
531
+ # 引用
532
+ ```bib
533
+ @article{musev,
534
+ title={MuseV: 基于视觉条件的并行去噪的无限长度和高保真虚拟人视频生成},
535
+ author={Xia, Zhiqiang and Chen, Zhaokang and Wu, Bin and Li, Chao and Hung, Kwok-Wai and Zhan, Chao and He, Yingjie and Zhou, Wenjiang},
536
+ journal={arxiv},
537
+ year={2024}
538
+ }
539
+ ```
540
+ # 免责声明/许可
541
+ 1. `代码`:`MuseV` 的代码采用 `MIT` 许可证发布,学术用途和商业用途都可以。
542
+ 1. `模型`:训练好的模型仅供非商业研究目的使用。
543
+ 1. `其他开源模型`:使用的其他开源模型必须遵守他们的许可证,如 `insightface`、`IP-Adapter`、`ft-mse-vae` 等。
544
+ 1. 测试数据收集自互联网,仅供非商业研究目的使用。
545
+ 1. `AIGC`:本项目旨在积极影响基于人工智能的视频生成领域。用户被授予使用此工具创建视频的自由,但他们应该遵守当地法律,并负责任地使用。开发人员不对用户可能的不当使用承担任何责任。
configs/model/T2I_all_model.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+
4
+ T2IDir = os.path.join(
5
+ os.path.dirname(os.path.abspath(__file__)), "../../checkpoints", "t2i"
6
+ )
7
+
8
+ MODEL_CFG = {
9
+ "majicmixRealv6Fp16": {
10
+ "sd": os.path.join(T2IDir, "sd1.5/majicmixRealv6Fp16"),
11
+ },
12
+ "fantasticmix_v10": {
13
+ "sd": os.path.join(T2IDir, "sd1.5/fantasticmix_v10"),
14
+ },
15
+ }
configs/model/ip_adapter.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ IPAdapterModelDir = os.path.join(
4
+ os.path.dirname(os.path.abspath(__file__)), "../../checkpoints", "IP-Adapter"
5
+ )
6
+
7
+
8
+ MotionDir = os.path.join(
9
+ os.path.dirname(os.path.abspath(__file__)), "../../checkpoints", "motion"
10
+ )
11
+
12
+
13
+ MODEL_CFG = {
14
+ "IPAdapter": {
15
+ "ip_image_encoder": os.path.join(IPAdapterModelDir, "models/image_encoder"),
16
+ "ip_ckpt": os.path.join(IPAdapterModelDir, "ip-adapter_sd15.bin"),
17
+ "ip_scale": 1.0,
18
+ "clip_extra_context_tokens": 4,
19
+ "clip_embeddings_dim": 1024,
20
+ "desp": "",
21
+ },
22
+ "IPAdapterPlus": {
23
+ "ip_image_encoder": os.path.join(IPAdapterModelDir, "image_encoder"),
24
+ "ip_ckpt": os.path.join(IPAdapterModelDir, "ip-adapter-plus_sd15.bin"),
25
+ "ip_scale": 1.0,
26
+ "clip_extra_context_tokens": 16,
27
+ "clip_embeddings_dim": 1024,
28
+ "desp": "",
29
+ },
30
+ "IPAdapterPlus-face": {
31
+ "ip_image_encoder": os.path.join(IPAdapterModelDir, "image_encoder"),
32
+ "ip_ckpt": os.path.join(IPAdapterModelDir, "ip-adapter-plus-face_sd15.bin"),
33
+ "ip_scale": 1.0,
34
+ "clip_extra_context_tokens": 16,
35
+ "clip_embeddings_dim": 1024,
36
+ "desp": "",
37
+ },
38
+ "IPAdapterFaceID": {
39
+ "ip_image_encoder": os.path.join(IPAdapterModelDir, "image_encoder"),
40
+ "ip_ckpt": os.path.join(IPAdapterModelDir, "ip-adapter-faceid_sd15.bin"),
41
+ "ip_scale": 1.0,
42
+ "clip_extra_context_tokens": 4,
43
+ "clip_embeddings_dim": 512,
44
+ "desp": "",
45
+ },
46
+ "musev_referencenet": {
47
+ "ip_image_encoder": os.path.join(IPAdapterModelDir, "image_encoder"),
48
+ "ip_ckpt": os.path.join(
49
+ MotionDir, "musev_referencenet/ip_adapter_image_proj.bin"
50
+ ),
51
+ "ip_scale": 1.0,
52
+ "clip_extra_context_tokens": 4,
53
+ "clip_embeddings_dim": 1024,
54
+ "desp": "",
55
+ },
56
+ "musev_referencenet_pose": {
57
+ "ip_image_encoder": os.path.join(IPAdapterModelDir, "image_encoder"),
58
+ "ip_ckpt": os.path.join(
59
+ MotionDir, "musev_referencenet_pose/ip_adapter_image_proj.bin"
60
+ ),
61
+ "ip_scale": 1.0,
62
+ "clip_extra_context_tokens": 4,
63
+ "clip_embeddings_dim": 1024,
64
+ "desp": "",
65
+ },
66
+ }
configs/model/lcm_model.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+
4
+ LCMDir = os.path.join(
5
+ os.path.dirname(os.path.abspath(__file__)), "../../checkpoints", "lcm"
6
+ )
7
+
8
+
9
+ MODEL_CFG = {
10
+ "lcm": {
11
+ os.path.join(LCMDir, "lcm-lora-sdv1-5/pytorch_lora_weights.safetensors"): {
12
+ "strength": 1.0,
13
+ "lora_block_weight": "ALL",
14
+ "strength_offset": 0,
15
+ },
16
+ },
17
+ }
configs/model/motion_model.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+
4
+ MotionDIr = os.path.join(
5
+ os.path.dirname(os.path.abspath(__file__)), "../../checkpoints", "motion"
6
+ )
7
+
8
+
9
+ MODEL_CFG = {
10
+ "musev": {
11
+ "unet": os.path.join(MotionDIr, "musev"),
12
+ "desp": "only train unet motion module, fix t2i",
13
+ },
14
+ "musev_referencenet": {
15
+ "unet": os.path.join(MotionDIr, "musev_referencenet"),
16
+ "desp": "train referencenet, IPAdapter and unet motion module, fix t2i",
17
+ },
18
+ "musev_referencenet_pose": {
19
+ "unet": os.path.join(MotionDIr, "musev_referencenet_pose"),
20
+ "desp": "train unet motion module and IPAdapter, fix t2i and referencenet",
21
+ },
22
+ }
configs/model/negative_prompt.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Negative_Prompt_CFG = {
2
+ "Empty": {
3
+ "base_model": "",
4
+ "prompt": "",
5
+ "refer": "",
6
+ },
7
+ "V1": {
8
+ "base_model": "",
9
+ "prompt": "nsfw, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, tail, watermarks",
10
+ "refer": "",
11
+ },
12
+ "V2": {
13
+ "base_model": "",
14
+ "prompt": "badhandv4, ng_deepnegative_v1_75t, (((multiple heads))), (((bad body))), (((two people))), ((extra arms)), ((deformed body)), (((sexy))), paintings,(((two heads))), ((big head)),sketches, (worst quality:2), (low quality:2), (normal quality:2), lowres, ((monochrome)), ((grayscale)), skin spots, acnes, skin blemishes, age spot, glans, (((nsfw))), nipples, extra fingers, (extra legs), (long neck), mutated hands, (fused fingers), (too many fingers)",
15
+ "refer": "Weiban",
16
+ },
17
+ "V3": {
18
+ "base_model": "",
19
+ "prompt": "badhandv4, ng_deepnegative_v1_75t, bad quality",
20
+ "refer": "",
21
+ },
22
+ "V4": {
23
+ "base_model": "",
24
+ "prompt": "badhandv4,ng_deepnegative_v1_75t,EasyNegativeV2,bad_prompt_version2-neg,bad quality",
25
+ "refer": "",
26
+ },
27
+ "V5": {
28
+ "base_model": "",
29
+ "prompt": "(((multiple heads))), (((bad body))), (((two people))), ((extra arms)), ((deformed body)), (((sexy))), paintings,(((two heads))), ((big head)),sketches, (worst quality:2), (low quality:2), (normal quality:2), lowres, ((monochrome)), ((grayscale)), skin spots, acnes, skin blemishes, age spot, glans, (((nsfw))), nipples, extra fingers, (extra legs), (long neck), mutated hands, (fused fingers), (too many fingers)",
30
+ "refer": "Weiban",
31
+ },
32
+ }
configs/model/referencenet.py ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+
4
+ MotionDIr = os.path.join(
5
+ os.path.dirname(os.path.abspath(__file__)), "../../checkpoints", "motion"
6
+ )
7
+
8
+
9
+ MODEL_CFG = {
10
+ "musev_referencenet": {
11
+ "net": os.path.join(MotionDIr, "musev_referencenet"),
12
+ "desp": "",
13
+ },
14
+ }
configs/tasks/example.yaml ADDED
@@ -0,0 +1,215 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # - name: task_name
2
+ # condition_images: vision condition images path
3
+ # video_path: str, default null, used for video2video
4
+ # prompt: text to guide image generation
5
+ # ipadapter_image: image_path for IP-Apdater
6
+ # refer_image: image_path for referencenet, generally speaking, same as ipadapter_image
7
+ # height: int # The shorter the image size, the larger the motion amplitude, and the lower video quality.
8
+ # width: int # The longer the W&H, the smaller the motion amplitude, and the higher video quality.
9
+ # img_length_ratio: float, generation video size is (height, width) * img_length_ratio
10
+
11
+ # text/image2video
12
+ - condition_images: ./data/images/yongen.jpeg
13
+ eye_blinks_factor: 1.8
14
+ height: 1308
15
+ img_length_ratio: 0.957
16
+ ipadapter_image: ${.condition_images}
17
+ name: yongen
18
+ prompt: (masterpiece, best quality, highres:1),(1girl, solo:1),(beautiful face,
19
+ soft skin, costume:1),(eye blinks:{eye_blinks_factor}),(head wave:1.3)
20
+ refer_image: ${.condition_images}
21
+ video_path: null
22
+ width: 736
23
+ - condition_images: ./data/images/jinkesi2.jpeg
24
+ eye_blinks_factor: 1.8
25
+ height: 714
26
+ img_length_ratio: 1.25
27
+ ipadapter_image: ${.condition_images}
28
+ name: jinkesi2
29
+ prompt: (masterpiece, best quality, highres:1),(1girl, solo:1),(beautiful face,
30
+ soft skin, costume:1),(eye blinks:{eye_blinks_factor}),(head wave:1.3)
31
+ refer_image: ${.condition_images}
32
+ video_path: null
33
+ width: 563
34
+ - condition_images: ./data/images/seaside4.jpeg
35
+ eye_blinks_factor: 1.8
36
+ height: 317
37
+ img_length_ratio: 2.221
38
+ ipadapter_image: ${.condition_images}
39
+ name: seaside4
40
+ prompt: (masterpiece, best quality, highres:1), peaceful beautiful sea scene
41
+ refer_image: ${.condition_images}
42
+ video_path: null
43
+ width: 564
44
+ - condition_images: ./data/images/seaside_girl.jpeg
45
+ eye_blinks_factor: 1.8
46
+ height: 736
47
+ img_length_ratio: 0.957
48
+ ipadapter_image: ${.condition_images}
49
+ name: seaside_girl
50
+ prompt: (masterpiece, best quality, highres:1), peaceful beautiful sea scene
51
+ refer_image: ${.condition_images}
52
+ video_path: null
53
+ width: 736
54
+ - condition_images: ./data/images/boy_play_guitar.jpeg
55
+ eye_blinks_factor: 1.8
56
+ height: 846
57
+ img_length_ratio: 1.248
58
+ ipadapter_image: ${.condition_images}
59
+ name: boy_play_guitar
60
+ prompt: (masterpiece, best quality, highres:1), playing guitar
61
+ refer_image: ${.condition_images}
62
+ video_path: null
63
+ width: 564
64
+ - condition_images: ./data/images/girl_play_guitar2.jpeg
65
+ eye_blinks_factor: 1.8
66
+ height: 1002
67
+ img_length_ratio: 1.248
68
+ ipadapter_image: ${.condition_images}
69
+ name: girl_play_guitar2
70
+ prompt: (masterpiece, best quality, highres:1), playing guitar
71
+ refer_image: ${.condition_images}
72
+ video_path: null
73
+ width: 564
74
+ - condition_images: ./data/images/boy_play_guitar2.jpeg
75
+ eye_blinks_factor: 1.8
76
+ height: 630
77
+ img_length_ratio: 1.676
78
+ ipadapter_image: ${.condition_images}
79
+ name: boy_play_guitar2
80
+ prompt: (masterpiece, best quality, highres:1), playing guitar
81
+ refer_image: ${.condition_images}
82
+ video_path: null
83
+ width: 420
84
+ - condition_images: ./data/images/girl_play_guitar4.jpeg
85
+ eye_blinks_factor: 1.8
86
+ height: 846
87
+ img_length_ratio: 1.248
88
+ ipadapter_image: ${.condition_images}
89
+ name: girl_play_guitar4
90
+ prompt: (masterpiece, best quality, highres:1), playing guitar
91
+ refer_image: ${.condition_images}
92
+ video_path: null
93
+ width: 564
94
+ - condition_images: ./data/images/dufu.jpeg
95
+ eye_blinks_factor: 1.8
96
+ height: 500
97
+ img_length_ratio: 1.495
98
+ ipadapter_image: ${.condition_images}
99
+ name: dufu
100
+ prompt: (masterpiece, best quality, highres:1),(1girl, solo:1),(beautiful face,
101
+ soft skin, costume:1),(eye blinks:{eye_blinks_factor}),(head wave:1.3)
102
+ refer_image: ${.condition_images}
103
+ video_path: null
104
+ width: 471
105
+ - condition_images: ./data/images/Mona_Lisa..jpg
106
+ eye_blinks_factor: 1.8
107
+ height: 894
108
+ img_length_ratio: 1.173
109
+ ipadapter_image: ${.condition_images}
110
+ name: Mona_Lisa.
111
+ prompt: (masterpiece, best quality, highres:1),(1girl, solo:1),(beautiful face,
112
+ soft skin, costume:1),(eye blinks:{eye_blinks_factor}),(head wave:1.3)
113
+ refer_image: ${.condition_images}
114
+ video_path: null
115
+ width: 600
116
+ - condition_images: ./data/images/Portrait-of-Dr.-Gachet.jpg
117
+ eye_blinks_factor: 1.8
118
+ height: 985
119
+ img_length_ratio: 0.88
120
+ ipadapter_image: ${.condition_images}
121
+ name: Portrait-of-Dr.-Gachet
122
+ prompt: (masterpiece, best quality, highres:1),(1girl, solo:1),(beautiful face,
123
+ soft skin, costume:1),(eye blinks:{eye_blinks_factor}),(head wave:1.3)
124
+ refer_image: ${.condition_images}
125
+ video_path: null
126
+ width: 800
127
+ - condition_images: ./data/images/Self-Portrait-with-Cropped-Hair.jpg
128
+ eye_blinks_factor: 1.8
129
+ height: 565
130
+ img_length_ratio: 1.246
131
+ ipadapter_image: ${.condition_images}
132
+ name: Self-Portrait-with-Cropped-Hair
133
+ prompt: (masterpiece, best quality, highres:1),(1girl, solo:1),(beautiful face,
134
+ soft skin, costume:1),(eye blinks:{eye_blinks_factor}),(head wave:1.3)
135
+ refer_image: ${.condition_images}
136
+ video_path: null
137
+ width: 848
138
+ - condition_images: ./data/images/The-Laughing-Cavalier.jpg
139
+ eye_blinks_factor: 1.8
140
+ height: 1462
141
+ img_length_ratio: 0.587
142
+ ipadapter_image: ${.condition_images}
143
+ name: The-Laughing-Cavalier
144
+ prompt: (masterpiece, best quality, highres:1),(1girl, solo:1),(beautiful face,
145
+ soft skin, costume:1),(eye blinks:{eye_blinks_factor}),(head wave:1.3)
146
+ refer_image: ${.condition_images}
147
+ video_path: null
148
+ width: 1200
149
+
150
+ # scene
151
+ - condition_images: ./data/images/waterfall4.jpeg
152
+ eye_blinks_factor: 1.8
153
+ height: 846
154
+ img_length_ratio: 1.248
155
+ ipadapter_image: ${.condition_images}
156
+ name: waterfall4
157
+ prompt: (masterpiece, best quality, highres:1), peaceful beautiful waterfall, an
158
+ endless waterfall
159
+ refer_image: ${.condition_images}
160
+ video_path: null
161
+ width: 564
162
+ - condition_images: ./data/images/river.jpeg
163
+ eye_blinks_factor: 1.8
164
+ height: 736
165
+ img_length_ratio: 0.957
166
+ ipadapter_image: ${.condition_images}
167
+ name: river
168
+ prompt: (masterpiece, best quality, highres:1), peaceful beautiful river
169
+ refer_image: ${.condition_images}
170
+ video_path: null
171
+ width: 736
172
+ - condition_images: ./data/images/seaside2.jpeg
173
+ eye_blinks_factor: 1.8
174
+ height: 1313
175
+ img_length_ratio: 0.957
176
+ ipadapter_image: ${.condition_images}
177
+ name: seaside2
178
+ prompt: (masterpiece, best quality, highres:1), peaceful beautiful sea scene
179
+ refer_image: ${.condition_images}
180
+ video_path: null
181
+ width: 736
182
+
183
+ # video2video
184
+ - name: "dance1"
185
+ prompt: "(masterpiece, best quality, highres:1) , a girl is dancing, wearing a dress made of stars, animation"
186
+ video_path: ./data/source_video/video1_girl_poseseq.mp4
187
+ condition_images: ./data/images/spark_girl.png
188
+ refer_image: ${.condition_images}
189
+ ipadapter_image: ${.condition_images}
190
+ height: 960
191
+ width: 512
192
+ img_length_ratio: 1.0
193
+ video_is_middle: True # if true, means video_path is controlnet condition, not natural rgb video
194
+
195
+ - name: "dance2"
196
+ prompt: "(best quality), ((masterpiece)), (highres), illustration, original, extremely detailed wallpaper"
197
+ video_path: ./data/source_video/video1_girl_poseseq.mp4
198
+ condition_images: ./data/images/cyber_girl.png
199
+ refer_image: ${.condition_images}
200
+ ipadapter_image: ${.condition_images}
201
+ height: 960
202
+ width: 512
203
+ img_length_ratio: 1.0
204
+ video_is_middle: True # if true, means video_path is controlnet condition, not natural rgb video
205
+
206
+ - name: "duffy"
207
+ prompt: "(best quality), ((masterpiece)), (highres), illustration, original, extremely detailed wallpaper"
208
+ video_path: ./data/source_video/pose-for-Duffy-4.mp4
209
+ condition_images: ./data/images/duffy.png
210
+ refer_image: ${.condition_images}
211
+ ipadapter_image: ${.condition_images}
212
+ height: 1280
213
+ width: 704
214
+ img_length_ratio: 1.0
215
+ video_is_middle: True # if true, means video_path is controlnet condition, not natural rgb video
controlnet_aux/.gitignore ADDED
@@ -0,0 +1,178 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Initially taken from Github's Python gitignore file
2
+
3
+ # Byte-compiled / optimized / DLL files
4
+ __pycache__/
5
+ *.py[cod]
6
+ *$py.class
7
+
8
+ # C extensions
9
+ *.so
10
+
11
+ # tests and logs
12
+ tests/fixtures/cached_*_text.txt
13
+ logs/
14
+ lightning_logs/
15
+ lang_code_data/
16
+ tests/outputs
17
+
18
+ # Distribution / packaging
19
+ .Python
20
+ build/
21
+ develop-eggs/
22
+ dist/
23
+ downloads/
24
+ eggs/
25
+ .eggs/
26
+ lib/
27
+ lib64/
28
+ parts/
29
+ sdist/
30
+ var/
31
+ wheels/
32
+ *.egg-info/
33
+ .installed.cfg
34
+ *.egg
35
+ MANIFEST
36
+
37
+ # PyInstaller
38
+ # Usually these files are written by a python script from a template
39
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
40
+ *.manifest
41
+ *.spec
42
+
43
+ # Installer logs
44
+ pip-log.txt
45
+ pip-delete-this-directory.txt
46
+
47
+ # Unit test / coverage reports
48
+ htmlcov/
49
+ .tox/
50
+ .nox/
51
+ .coverage
52
+ .coverage.*
53
+ .cache
54
+ nosetests.xml
55
+ coverage.xml
56
+ *.cover
57
+ .hypothesis/
58
+ .pytest_cache/
59
+
60
+ # Translations
61
+ *.mo
62
+ *.pot
63
+
64
+ # Django stuff:
65
+ *.log
66
+ local_settings.py
67
+ db.sqlite3
68
+
69
+ # Flask stuff:
70
+ instance/
71
+ .webassets-cache
72
+
73
+ # Scrapy stuff:
74
+ .scrapy
75
+
76
+ # Sphinx documentation
77
+ docs/_build/
78
+
79
+ # PyBuilder
80
+ target/
81
+
82
+ # Jupyter Notebook
83
+ .ipynb_checkpoints
84
+
85
+ # IPython
86
+ profile_default/
87
+ ipython_config.py
88
+
89
+ # pyenv
90
+ .python-version
91
+
92
+ # celery beat schedule file
93
+ celerybeat-schedule
94
+
95
+ # SageMath parsed files
96
+ *.sage.py
97
+
98
+ # Environments
99
+ .env
100
+ .venv
101
+ env/
102
+ venv/
103
+ ENV/
104
+ env.bak/
105
+ venv.bak/
106
+
107
+ # Spyder project settings
108
+ .spyderproject
109
+ .spyproject
110
+
111
+ # Rope project settings
112
+ .ropeproject
113
+
114
+ # mkdocs documentation
115
+ /site
116
+
117
+ # mypy
118
+ .mypy_cache/
119
+ .dmypy.json
120
+ dmypy.json
121
+
122
+ # Pyre type checker
123
+ .pyre/
124
+
125
+ # vscode
126
+ .vs
127
+ .vscode
128
+
129
+ # Pycharm
130
+ .idea
131
+
132
+ # TF code
133
+ tensorflow_code
134
+
135
+ # Models
136
+ proc_data
137
+
138
+ # examples
139
+ runs
140
+ /runs_old
141
+ /wandb
142
+ /examples/runs
143
+ /examples/**/*.args
144
+ /examples/rag/sweep
145
+
146
+ # data
147
+ /data
148
+ serialization_dir
149
+
150
+ # emacs
151
+ *.*~
152
+ debug.env
153
+
154
+ # vim
155
+ .*.swp
156
+
157
+ #ctags
158
+ tags
159
+
160
+ # pre-commit
161
+ .pre-commit*
162
+
163
+ # .lock
164
+ *.lock
165
+
166
+ # DS_Store (MacOS)
167
+ .DS_Store
168
+ # RL pipelines may produce mp4 outputs
169
+ *.mp4
170
+
171
+ # dependencies
172
+ /transformers
173
+
174
+ # ruff
175
+ .ruff_cache
176
+
177
+ wandb
178
+
controlnet_aux/LICENSE.txt ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
controlnet_aux/README.md ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ControlNet auxiliary models
2
+
3
+ This is a PyPi installable package of [lllyasviel's ControlNet Annotators](https://github.com/lllyasviel/ControlNet/tree/main/annotator)
4
+
5
+ The code is copy-pasted from the respective folders in https://github.com/lllyasviel/ControlNet/tree/main/annotator and connected to [the 🤗 Hub](https://huggingface.co/lllyasviel/Annotators).
6
+
7
+ All credit & copyright goes to https://github.com/lllyasviel .
8
+
9
+ ## Install
10
+
11
+ ```
12
+ pip install controlnet-aux==0.0.7
13
+ ```
14
+
15
+ To support DWPose which is dependent on MMDetection, MMCV and MMPose
16
+ ```
17
+ pip install -U openmim
18
+ mim install mmengine
19
+ mim install "mmcv>=2.0.1"
20
+ mim install "mmdet>=3.1.0"
21
+ mim install "mmpose>=1.1.0"
22
+ ```
23
+ ## Usage
24
+
25
+
26
+ You can use the processor class, which can load each of the auxiliary models with the following code
27
+ ```python
28
+ import requests
29
+ from PIL import Image
30
+ from io import BytesIO
31
+
32
+ from controlnet_aux.processor import Processor
33
+
34
+ # load image
35
+ url = "https://huggingface.co/lllyasviel/sd-controlnet-openpose/resolve/main/images/pose.png"
36
+
37
+ response = requests.get(url)
38
+ img = Image.open(BytesIO(response.content)).convert("RGB").resize((512, 512))
39
+
40
+ # load processor from processor_id
41
+ # options are:
42
+ # ["canny", "depth_leres", "depth_leres++", "depth_midas", "depth_zoe", "lineart_anime",
43
+ # "lineart_coarse", "lineart_realistic", "mediapipe_face", "mlsd", "normal_bae", "normal_midas",
44
+ # "openpose", "openpose_face", "openpose_faceonly", "openpose_full", "openpose_hand",
45
+ # "scribble_hed, "scribble_pidinet", "shuffle", "softedge_hed", "softedge_hedsafe",
46
+ # "softedge_pidinet", "softedge_pidsafe", "dwpose"]
47
+ processor_id = 'scribble_hed'
48
+ processor = Processor(processor_id)
49
+
50
+ processed_image = processor(img, to_pil=True)
51
+ ```
52
+
53
+ Each model can be loaded individually by importing and instantiating them as follows
54
+ ```python
55
+ from PIL import Image
56
+ import requests
57
+ from io import BytesIO
58
+ from controlnet_aux import HEDdetector, MidasDetector, MLSDdetector, OpenposeDetector, PidiNetDetector, NormalBaeDetector, LineartDetector, LineartAnimeDetector, CannyDetector, ContentShuffleDetector, ZoeDetector, MediapipeFaceDetector, SamDetector, LeresDetector, DWposeDetector
59
+
60
+ # load image
61
+ url = "https://huggingface.co/lllyasviel/sd-controlnet-openpose/resolve/main/images/pose.png"
62
+
63
+ response = requests.get(url)
64
+ img = Image.open(BytesIO(response.content)).convert("RGB").resize((512, 512))
65
+
66
+ # load checkpoints
67
+ hed = HEDdetector.from_pretrained("lllyasviel/Annotators")
68
+ midas = MidasDetector.from_pretrained("lllyasviel/Annotators")
69
+ mlsd = MLSDdetector.from_pretrained("lllyasviel/Annotators")
70
+ open_pose = OpenposeDetector.from_pretrained("lllyasviel/Annotators")
71
+ pidi = PidiNetDetector.from_pretrained("lllyasviel/Annotators")
72
+ normal_bae = NormalBaeDetector.from_pretrained("lllyasviel/Annotators")
73
+ lineart = LineartDetector.from_pretrained("lllyasviel/Annotators")
74
+ lineart_anime = LineartAnimeDetector.from_pretrained("lllyasviel/Annotators")
75
+ zoe = ZoeDetector.from_pretrained("lllyasviel/Annotators")
76
+ sam = SamDetector.from_pretrained("ybelkada/segment-anything", subfolder="checkpoints")
77
+ mobile_sam = SamDetector.from_pretrained("dhkim2810/MobileSAM", model_type="vit_t", filename="mobile_sam.pt")
78
+ leres = LeresDetector.from_pretrained("lllyasviel/Annotators")
79
+
80
+ # specify configs, ckpts and device, or it will be downloaded automatically and use cpu by default
81
+ # det_config: ./src/controlnet_aux/dwpose/yolox_config/yolox_l_8xb8-300e_coco.py
82
+ # det_ckpt: https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_l_8x8_300e_coco/yolox_l_8x8_300e_coco_20211126_140236-d3bd2b23.pth
83
+ # pose_config: ./src/controlnet_aux/dwpose/dwpose_config/dwpose-l_384x288.py
84
+ # pose_ckpt: https://huggingface.co/wanghaofan/dw-ll_ucoco_384/resolve/main/dw-ll_ucoco_384.pth
85
+ import torch
86
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
87
+ dwpose = DWposeDetector(det_config=det_config, det_ckpt=det_ckpt, pose_config=pose_config, pose_ckpt=pose_ckpt, device=device)
88
+
89
+ # instantiate
90
+ canny = CannyDetector()
91
+ content = ContentShuffleDetector()
92
+ face_detector = MediapipeFaceDetector()
93
+
94
+
95
+ # process
96
+ processed_image_hed = hed(img)
97
+ processed_image_midas = midas(img)
98
+ processed_image_mlsd = mlsd(img)
99
+ processed_image_open_pose = open_pose(img, hand_and_face=True)
100
+ processed_image_pidi = pidi(img, safe=True)
101
+ processed_image_normal_bae = normal_bae(img)
102
+ processed_image_lineart = lineart(img, coarse=True)
103
+ processed_image_lineart_anime = lineart_anime(img)
104
+ processed_image_zoe = zoe(img)
105
+ processed_image_sam = sam(img)
106
+ processed_image_leres = leres(img)
107
+
108
+ processed_image_canny = canny(img)
109
+ processed_image_content = content(img)
110
+ processed_image_mediapipe_face = face_detector(img)
111
+ processed_image_dwpose = dwpose(img)
112
+ ```
controlnet_aux/setup.py ADDED
@@ -0,0 +1,233 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ """
16
+ Simple check list from AllenNLP repo: https://github.com/allenai/allennlp/blob/main/setup.py
17
+
18
+ To create the package for pypi.
19
+
20
+ 1. Run `make pre-release` (or `make pre-patch` for a patch release) then run `make fix-copies` to fix the index of the
21
+ documentation.
22
+
23
+ If releasing on a special branch, copy the updated README.md on the main branch for your the commit you will make
24
+ for the post-release and run `make fix-copies` on the main branch as well.
25
+
26
+ 2. Run Tests for Amazon Sagemaker. The documentation is located in `./tests/sagemaker/README.md`, otherwise @philschmid.
27
+
28
+ 3. Unpin specific versions from setup.py that use a git install.
29
+
30
+ 4. Checkout the release branch (v<RELEASE>-release, for example v4.19-release), and commit these changes with the
31
+ message: "Release: <RELEASE>" and push.
32
+
33
+ 5. Wait for the tests on main to be completed and be green (otherwise revert and fix bugs)
34
+
35
+ 6. Add a tag in git to mark the release: "git tag v<RELEASE> -m 'Adds tag v<RELEASE> for pypi' "
36
+ Push the tag to git: git push --tags origin v<RELEASE>-release
37
+
38
+ 7. Build both the sources and the wheel. Do not change anything in setup.py between
39
+ creating the wheel and the source distribution (obviously).
40
+
41
+ For the wheel, run: "python setup.py bdist_wheel" in the top level directory.
42
+ (this will build a wheel for the python version you use to build it).
43
+
44
+ For the sources, run: "python setup.py sdist"
45
+ You should now have a /dist directory with both .whl and .tar.gz source versions.
46
+
47
+ 8. Check that everything looks correct by uploading the package to the pypi test server:
48
+
49
+ twine upload dist/* -r pypitest
50
+ (pypi suggest using twine as other methods upload files via plaintext.)
51
+ You may have to specify the repository url, use the following command then:
52
+ twine upload dist/* -r pypitest --repository-url=https://test.pypi.org/legacy/
53
+
54
+ Check that you can install it in a virtualenv by running:
55
+ pip install -i https://testpypi.python.org/pypi diffusers
56
+
57
+ Check you can run the following commands:
58
+ python -c "from diffusers import pipeline; classifier = pipeline('text-classification'); print(classifier('What a nice release'))"
59
+ python -c "from diffusers import *"
60
+
61
+ 9. Upload the final version to actual pypi:
62
+ twine upload dist/* -r pypi
63
+
64
+ 10. Copy the release notes from RELEASE.md to the tag in github once everything is looking hunky-dory.
65
+
66
+ 11. Run `make post-release` (or, for a patch release, `make post-patch`). If you were on a branch for the release,
67
+ you need to go back to main before executing this.
68
+ """
69
+
70
+ import os
71
+ import re
72
+ from distutils.core import Command
73
+
74
+ from setuptools import find_packages, setup
75
+
76
+ # IMPORTANT:
77
+ # 1. all dependencies should be listed here with their version requirements if any
78
+ # 2. once modified, run: `make deps_table_update` to update src/diffusers/dependency_versions_table.py
79
+ _deps = [
80
+ "Pillow",
81
+ "torch",
82
+ "numpy",
83
+ "filelock",
84
+ "importlib_metadata",
85
+ "opencv-python-headless",
86
+ "scipy",
87
+ "huggingface_hub",
88
+ "einops",
89
+ "timm",
90
+ "torchvision",
91
+ "scikit-image"
92
+ ]
93
+
94
+ # this is a lookup table with items like:
95
+ #
96
+ # tokenizers: "huggingface-hub==0.8.0"
97
+ # packaging: "packaging"
98
+ #
99
+ # some of the values are versioned whereas others aren't.
100
+ deps = {
101
+ b: a for a, b in (re.findall(r"^(([^!=<>~]+)(?:[!=<>~].*)?$)", x)[0] for x in _deps)
102
+ }
103
+
104
+ # since we save this data in src/diffusers/dependency_versions_table.py it can be easily accessed from
105
+ # anywhere. If you need to quickly access the data from this table in a shell, you can do so easily with:
106
+ #
107
+ # python -c 'import sys; from diffusers.dependency_versions_table import deps; \
108
+ # print(" ".join([ deps[x] for x in sys.argv[1:]]))' tokenizers datasets
109
+ #
110
+ # Just pass the desired package names to that script as it's shown with 2 packages above.
111
+ #
112
+ # If diffusers is not yet installed and the work is done from the cloned repo remember to add `PYTHONPATH=src` to the script above
113
+ #
114
+ # You can then feed this for example to `pip`:
115
+ #
116
+ # pip install -U $(python -c 'import sys; from diffusers.dependency_versions_table import deps; \
117
+ # print(" ".join([ deps[x] for x in sys.argv[1:]]))' tokenizers datasets)
118
+ #
119
+
120
+
121
+ def deps_list(*pkgs):
122
+ return [deps[pkg] for pkg in pkgs]
123
+
124
+
125
+ class DepsTableUpdateCommand(Command):
126
+ """
127
+ A custom distutils command that updates the dependency table.
128
+ usage: python setup.py deps_table_update
129
+ """
130
+
131
+ description = "build runtime dependency table"
132
+ user_options = [
133
+ # format: (long option, short option, description).
134
+ (
135
+ "dep-table-update",
136
+ None,
137
+ "updates src/diffusers/dependency_versions_table.py",
138
+ ),
139
+ ]
140
+
141
+ def initialize_options(self):
142
+ pass
143
+
144
+ def finalize_options(self):
145
+ pass
146
+
147
+ def run(self):
148
+ entries = "\n".join([f' "{k}": "{v}",' for k, v in deps.items()])
149
+ content = [
150
+ "# THIS FILE HAS BEEN AUTOGENERATED. To update:",
151
+ "# 1. modify the `_deps` dict in setup.py",
152
+ "# 2. run `make deps_table_update``",
153
+ "deps = {",
154
+ entries,
155
+ "}",
156
+ "",
157
+ ]
158
+ target = "src/controlnet_aux/dependency_versions_table.py"
159
+ print(f"updating {target}")
160
+ with open(target, "w", encoding="utf-8", newline="\n") as f:
161
+ f.write("\n".join(content))
162
+
163
+
164
+ extras = {}
165
+
166
+ install_requires = [
167
+ deps["torch"],
168
+ deps["importlib_metadata"],
169
+ deps["huggingface_hub"],
170
+ deps["scipy"],
171
+ deps["opencv-python-headless"],
172
+ deps["filelock"],
173
+ deps["numpy"],
174
+ deps["Pillow"],
175
+ deps["einops"],
176
+ deps["torchvision"],
177
+ deps["timm"],
178
+ deps["scikit-image"],
179
+ ]
180
+
181
+ setup(
182
+ name="controlnet_aux",
183
+ version="0.0.6", # expected format is one of x.y.z.dev0, or x.y.z.rc1 or x.y.z (no to dashes, yes to dots)
184
+ description="Auxillary models for controlnet",
185
+ long_description=open("README.md", "r", encoding="utf-8").read(),
186
+ long_description_content_type="text/markdown",
187
+ keywords="deep learning",
188
+ license="Apache",
189
+ author="The HuggingFace team",
190
+ author_email="patrick@huggingface.co",
191
+ url="https://github.com/patrickvonplaten/controlnet_aux",
192
+ package_dir={"": "src"},
193
+ packages=find_packages("src"),
194
+ include_package_data=True,
195
+ python_requires=">=3.7.0",
196
+ install_requires=install_requires,
197
+ extras_require=extras,
198
+ classifiers=[
199
+ "Development Status :: 5 - Production/Stable",
200
+ "Intended Audience :: Developers",
201
+ "Intended Audience :: Education",
202
+ "Intended Audience :: Science/Research",
203
+ "License :: OSI Approved :: Apache Software License",
204
+ "Operating System :: OS Independent",
205
+ "Programming Language :: Python :: 3",
206
+ "Programming Language :: Python :: 3.7",
207
+ "Programming Language :: Python :: 3.8",
208
+ "Programming Language :: Python :: 3.9",
209
+ "Topic :: Scientific/Engineering :: Artificial Intelligence",
210
+ ],
211
+ cmdclass={"deps_table_update": DepsTableUpdateCommand},
212
+ package_data={'controlnet_aux' : ['zoe/zoedepth/models/zoedepth/*.json', 'zoe/zoedepth/models/zoedepth_nk/*.json']}
213
+ )
214
+
215
+ # Release checklist
216
+ # 1. Change the version in __init__.py and setup.py.
217
+ # 2. Commit these changes with the message: "Release: Release"
218
+ # 3. Add a tag in git to mark the release: "git tag RELEASE -m 'Adds tag RELEASE for pypi' "
219
+ # Push the tag to git: git push --tags origin main
220
+ # 4. Run the following commands in the top-level directory:
221
+ # python setup.py bdist_wheel
222
+ # python setup.py sdist
223
+ # 5. Upload the package to the pypi test server first:
224
+ # twine upload dist/* -r pypitest
225
+ # twine upload dist/* -r pypitest --repository-url=https://test.pypi.org/legacy/
226
+ # 6. Check that you can install it in a virtualenv by running:
227
+ # pip install -i https://testpypi.python.org/pypi diffusers
228
+ # diffusers env
229
+ # diffusers test
230
+ # 7. Upload the final version to actual pypi:
231
+ # twine upload dist/* -r pypi
232
+ # 8. Add release notes to the tag in github once everything is looking hunky-dory.
233
+ # 9. Update the version in __init__.py, setup.py to the new version "-dev" and push to master
controlnet_aux/src/controlnet_aux/__init__.py ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ __version__ = "0.0.6"
2
+
3
+ from .hed import HEDdetector
4
+ from .leres import LeresDetector
5
+ from .lineart import LineartDetector
6
+ from .lineart_anime import LineartAnimeDetector
7
+ from .midas import MidasDetector
8
+ from .mlsd import MLSDdetector
9
+ from .normalbae import NormalBaeDetector
10
+ from .open_pose import OpenposeDetector
11
+ from .pidi import PidiNetDetector
12
+ from .zoe import ZoeDetector
13
+
14
+ from .canny import CannyDetector
15
+ from .mediapipe_face import MediapipeFaceDetector
16
+ from .segment_anything import SamDetector
17
+ from .shuffle import ContentShuffleDetector
18
+ from .dwpose import DWposeDetector
controlnet_aux/src/controlnet_aux/canny/__init__.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import warnings
2
+ import cv2
3
+ import numpy as np
4
+ from PIL import Image
5
+ from ..util import HWC3, resize_image
6
+
7
+ class CannyDetector:
8
+ def __call__(self, input_image=None, low_threshold=100, high_threshold=200, detect_resolution=512, image_resolution=512, output_type=None, **kwargs):
9
+ if "img" in kwargs:
10
+ warnings.warn("img is deprecated, please use `input_image=...` instead.", DeprecationWarning)
11
+ input_image = kwargs.pop("img")
12
+
13
+ if input_image is None:
14
+ raise ValueError("input_image must be defined.")
15
+
16
+ if not isinstance(input_image, np.ndarray):
17
+ input_image = np.array(input_image, dtype=np.uint8)
18
+ output_type = output_type or "pil"
19
+ else:
20
+ output_type = output_type or "np"
21
+
22
+ input_image = HWC3(input_image)
23
+ input_image = resize_image(input_image, detect_resolution)
24
+
25
+ detected_map = cv2.Canny(input_image, low_threshold, high_threshold)
26
+ detected_map = HWC3(detected_map)
27
+
28
+ img = resize_image(input_image, image_resolution)
29
+ H, W, C = img.shape
30
+
31
+ detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
32
+
33
+ if output_type == "pil":
34
+ detected_map = Image.fromarray(detected_map)
35
+
36
+ return detected_map
controlnet_aux/src/controlnet_aux/dwpose/__init__.py ADDED
@@ -0,0 +1,235 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Openpose
2
+ # Original from CMU https://github.com/CMU-Perceptual-Computing-Lab/openpose
3
+ # 2nd Edited by https://github.com/Hzzone/pytorch-openpose
4
+ # 3rd Edited by ControlNet
5
+ # 4th Edited by ControlNet (added face and correct hands)
6
+
7
+ import os
8
+
9
+ os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
10
+
11
+ import cv2
12
+ import torch
13
+ import numpy as np
14
+ from PIL import Image
15
+
16
+ from ..util import HWC3, resize_image
17
+ from . import util
18
+ from pprint import pprint
19
+
20
+
21
+ def draw_pose(pose, H, W):
22
+ bodies = pose["bodies"]
23
+ faces = pose["faces"]
24
+ hands = pose["hands"]
25
+ candidate = bodies["candidate"]
26
+ subset = bodies["subset"]
27
+
28
+ canvas = np.zeros(shape=(H, W, 3), dtype=np.uint8)
29
+ canvas = util.draw_bodypose(canvas, candidate, subset)
30
+ canvas = util.draw_handpose(canvas, hands)
31
+ canvas = util.draw_facepose(canvas, faces)
32
+
33
+ return canvas
34
+
35
+
36
+ def draw_pose_on_canvas(pose, canvas):
37
+ bodies = pose["bodies"]
38
+ faces = pose["faces"]
39
+ hands = pose["hands"]
40
+ candidate = bodies["candidate"]
41
+ subset = bodies["subset"]
42
+
43
+ canvas = util.draw_bodypose(canvas, candidate, subset)
44
+ canvas = util.draw_handpose(canvas, hands)
45
+ canvas = util.draw_facepose(canvas, faces)
46
+
47
+ return canvas
48
+
49
+
50
+ def candidate2pose(
51
+ candidate,
52
+ subset,
53
+ include_body: bool = True,
54
+ include_face: bool = False,
55
+ hand_and_face: bool = None,
56
+ include_hand: bool = True,
57
+ ):
58
+ if hand_and_face is not None:
59
+ include_face = True
60
+ include_hand = True
61
+
62
+ nums, keys, locs = candidate.shape
63
+ body = candidate[:, :18].copy()
64
+ body = body.reshape(nums * 18, locs)
65
+ score = subset[:, :18]
66
+
67
+ for i in range(len(score)):
68
+ for j in range(len(score[i])):
69
+ if score[i][j] > 0.3:
70
+ score[i][j] = int(18 * i + j)
71
+ else:
72
+ score[i][j] = -1
73
+
74
+ un_visible = subset < 0.3
75
+ candidate[un_visible] = -1
76
+
77
+ foot = candidate[:, 18:24]
78
+
79
+ faces = candidate[:, 24:92]
80
+
81
+ hands = candidate[:, 92:113]
82
+ hands = np.vstack([hands, candidate[:, 113:]])
83
+
84
+ bodies = dict(candidate=body, subset=score)
85
+ if not include_body:
86
+ bodies = []
87
+ if not include_face:
88
+ faces = []
89
+ if not include_hand:
90
+ hands = []
91
+ pose = dict(bodies=bodies, hands=hands, faces=faces)
92
+ return pose
93
+
94
+
95
+ def size_calculate(H, W, resolution):
96
+ H = float(H)
97
+ W = float(W)
98
+ k = float(resolution) / min(H, W)
99
+ H *= k
100
+ W *= k
101
+ H = int(np.round(H / 64.0)) * 64
102
+ W = int(np.round(W / 64.0)) * 64
103
+ return H, W
104
+
105
+
106
+ def pose2map(pose, H_in, W_in, detect_resolution, image_resolution):
107
+ H, W = size_calculate(H_in, W_in, detect_resolution)
108
+ detected_map = draw_pose(pose, H, W)
109
+ detected_map = HWC3(detected_map)
110
+
111
+ H, W = size_calculate(H, W, image_resolution)
112
+
113
+ detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
114
+
115
+ return detected_map
116
+
117
+
118
+ def pose2map_on_canvas(pose, H_in, W_in, detect_resolution, image_resolution, canvas):
119
+ H, W = size_calculate(H_in, W_in, detect_resolution)
120
+ detected_map = draw_pose_on_canvas(pose, canvas)
121
+ detected_map = HWC3(detected_map)
122
+
123
+ H, W = size_calculate(H, W, image_resolution)
124
+
125
+ detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
126
+
127
+ return detected_map
128
+
129
+
130
+ class DWposeDetector:
131
+ def __init__(
132
+ self,
133
+ det_config=None,
134
+ det_ckpt=None,
135
+ pose_config=None,
136
+ pose_ckpt=None,
137
+ device="cpu",
138
+ ):
139
+ from .wholebody import Wholebody
140
+
141
+ self.pose_estimation = Wholebody(
142
+ det_config, det_ckpt, pose_config, pose_ckpt, device
143
+ )
144
+
145
+ def to(self, device):
146
+ self.pose_estimation.to(device)
147
+ return self
148
+
149
+ def __call__(
150
+ self,
151
+ input_image,
152
+ detect_resolution=512,
153
+ image_resolution=512,
154
+ output_type="pil",
155
+ return_pose_dict=False,
156
+ return_pose_only=False,
157
+ include_body: bool = True,
158
+ include_hand: bool = True,
159
+ include_face: bool = True,
160
+ hand_hand_face: bool = None,
161
+ **kwargs
162
+ ):
163
+ if hand_hand_face:
164
+ include_face = True
165
+ include_hand = True
166
+ input_image = cv2.cvtColor(
167
+ np.array(input_image, dtype=np.uint8), cv2.COLOR_RGB2BGR
168
+ )
169
+
170
+ input_image = HWC3(input_image)
171
+ input_image = resize_image(input_image, detect_resolution)
172
+ H, W, C = input_image.shape
173
+
174
+ with torch.no_grad():
175
+ # print('=========== in controlnet_aux dwpose')
176
+ candidate, subset = self.pose_estimation(input_image)
177
+ # print(candidate.shape)
178
+ # print(subset.shape)
179
+ # candidate shape (1, 134, 2)
180
+ # subset (1, 134)
181
+ nums, keys, locs = candidate.shape
182
+ candidate[..., 0] /= float(W)
183
+ candidate[..., 1] /= float(H)
184
+
185
+ if return_pose_only:
186
+ return (candidate, subset)
187
+
188
+ body = candidate[:, :18].copy()
189
+ body = body.reshape(nums * 18, locs)
190
+ score = subset[:, :18]
191
+
192
+ for i in range(len(score)):
193
+ for j in range(len(score[i])):
194
+ if score[i][j] > 0.3:
195
+ score[i][j] = int(18 * i + j)
196
+ else:
197
+ score[i][j] = -1
198
+
199
+ un_visible = subset < 0.3
200
+ candidate[un_visible] = -1
201
+
202
+ foot = candidate[:, 18:24]
203
+
204
+ faces = candidate[:, 24:92]
205
+
206
+ hands = candidate[:, 92:113]
207
+ hands = np.vstack([hands, candidate[:, 113:]])
208
+
209
+ bodies = dict(candidate=body, subset=score)
210
+
211
+ if not include_face:
212
+ faces = []
213
+ if not include_body:
214
+ bodies = []
215
+ if not include_hand:
216
+ hands = []
217
+ pose = dict(bodies=bodies, hands=hands, faces=faces)
218
+
219
+ detected_map = draw_pose(pose, H, W)
220
+ detected_map = HWC3(detected_map)
221
+
222
+ img = resize_image(input_image, image_resolution)
223
+ H, W, C = img.shape
224
+
225
+ detected_map = cv2.resize(
226
+ detected_map, (W, H), interpolation=cv2.INTER_LINEAR
227
+ )
228
+
229
+ if output_type == "pil":
230
+ detected_map = Image.fromarray(detected_map)
231
+
232
+ if return_pose_dict:
233
+ return detected_map, pose
234
+ else:
235
+ return detected_map
controlnet_aux/src/controlnet_aux/dwpose/dwpose_config/dwpose-l_384x288.py ADDED
@@ -0,0 +1,257 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # runtime
2
+ max_epochs = 270
3
+ stage2_num_epochs = 30
4
+ base_lr = 4e-3
5
+
6
+ train_cfg = dict(max_epochs=max_epochs, val_interval=10)
7
+ randomness = dict(seed=21)
8
+
9
+ # optimizer
10
+ optim_wrapper = dict(
11
+ type='OptimWrapper',
12
+ optimizer=dict(type='AdamW', lr=base_lr, weight_decay=0.05),
13
+ paramwise_cfg=dict(
14
+ norm_decay_mult=0, bias_decay_mult=0, bypass_duplicate=True))
15
+
16
+ # learning rate
17
+ param_scheduler = [
18
+ dict(
19
+ type='LinearLR',
20
+ start_factor=1.0e-5,
21
+ by_epoch=False,
22
+ begin=0,
23
+ end=1000),
24
+ dict(
25
+ # use cosine lr from 150 to 300 epoch
26
+ type='CosineAnnealingLR',
27
+ eta_min=base_lr * 0.05,
28
+ begin=max_epochs // 2,
29
+ end=max_epochs,
30
+ T_max=max_epochs // 2,
31
+ by_epoch=True,
32
+ convert_to_iter_based=True),
33
+ ]
34
+
35
+ # automatically scaling LR based on the actual training batch size
36
+ auto_scale_lr = dict(base_batch_size=512)
37
+
38
+ # codec settings
39
+ codec = dict(
40
+ type='SimCCLabel',
41
+ input_size=(288, 384),
42
+ sigma=(6., 6.93),
43
+ simcc_split_ratio=2.0,
44
+ normalize=False,
45
+ use_dark=False)
46
+
47
+ # model settings
48
+ model = dict(
49
+ type='TopdownPoseEstimator',
50
+ data_preprocessor=dict(
51
+ type='PoseDataPreprocessor',
52
+ mean=[123.675, 116.28, 103.53],
53
+ std=[58.395, 57.12, 57.375],
54
+ bgr_to_rgb=True),
55
+ backbone=dict(
56
+ _scope_='mmdet',
57
+ type='CSPNeXt',
58
+ arch='P5',
59
+ expand_ratio=0.5,
60
+ deepen_factor=1.,
61
+ widen_factor=1.,
62
+ out_indices=(4, ),
63
+ channel_attention=True,
64
+ norm_cfg=dict(type='SyncBN'),
65
+ act_cfg=dict(type='SiLU'),
66
+ init_cfg=dict(
67
+ type='Pretrained',
68
+ prefix='backbone.',
69
+ checkpoint='https://download.openmmlab.com/mmpose/v1/projects/'
70
+ 'rtmpose/cspnext-l_udp-aic-coco_210e-256x192-273b7631_20230130.pth' # noqa
71
+ )),
72
+ head=dict(
73
+ type='RTMCCHead',
74
+ in_channels=1024,
75
+ out_channels=133,
76
+ input_size=codec['input_size'],
77
+ in_featuremap_size=(9, 12),
78
+ simcc_split_ratio=codec['simcc_split_ratio'],
79
+ final_layer_kernel_size=7,
80
+ gau_cfg=dict(
81
+ hidden_dims=256,
82
+ s=128,
83
+ expansion_factor=2,
84
+ dropout_rate=0.,
85
+ drop_path=0.,
86
+ act_fn='SiLU',
87
+ use_rel_bias=False,
88
+ pos_enc=False),
89
+ loss=dict(
90
+ type='KLDiscretLoss',
91
+ use_target_weight=True,
92
+ beta=10.,
93
+ label_softmax=True),
94
+ decoder=codec),
95
+ test_cfg=dict(flip_test=True, ))
96
+
97
+ # base dataset settings
98
+ dataset_type = 'CocoWholeBodyDataset'
99
+ data_mode = 'topdown'
100
+ data_root = '/data/'
101
+
102
+ backend_args = dict(backend='local')
103
+ # backend_args = dict(
104
+ # backend='petrel',
105
+ # path_mapping=dict({
106
+ # f'{data_root}': 's3://openmmlab/datasets/detection/coco/',
107
+ # f'{data_root}': 's3://openmmlab/datasets/detection/coco/'
108
+ # }))
109
+
110
+ # pipelines
111
+ train_pipeline = [
112
+ dict(type='LoadImage', backend_args=backend_args),
113
+ dict(type='GetBBoxCenterScale'),
114
+ dict(type='RandomFlip', direction='horizontal'),
115
+ dict(type='RandomHalfBody'),
116
+ dict(
117
+ type='RandomBBoxTransform', scale_factor=[0.6, 1.4], rotate_factor=80),
118
+ dict(type='TopdownAffine', input_size=codec['input_size']),
119
+ dict(type='mmdet.YOLOXHSVRandomAug'),
120
+ dict(
121
+ type='Albumentation',
122
+ transforms=[
123
+ dict(type='Blur', p=0.1),
124
+ dict(type='MedianBlur', p=0.1),
125
+ dict(
126
+ type='CoarseDropout',
127
+ max_holes=1,
128
+ max_height=0.4,
129
+ max_width=0.4,
130
+ min_holes=1,
131
+ min_height=0.2,
132
+ min_width=0.2,
133
+ p=1.0),
134
+ ]),
135
+ dict(type='GenerateTarget', encoder=codec),
136
+ dict(type='PackPoseInputs')
137
+ ]
138
+ val_pipeline = [
139
+ dict(type='LoadImage', backend_args=backend_args),
140
+ dict(type='GetBBoxCenterScale'),
141
+ dict(type='TopdownAffine', input_size=codec['input_size']),
142
+ dict(type='PackPoseInputs')
143
+ ]
144
+
145
+ train_pipeline_stage2 = [
146
+ dict(type='LoadImage', backend_args=backend_args),
147
+ dict(type='GetBBoxCenterScale'),
148
+ dict(type='RandomFlip', direction='horizontal'),
149
+ dict(type='RandomHalfBody'),
150
+ dict(
151
+ type='RandomBBoxTransform',
152
+ shift_factor=0.,
153
+ scale_factor=[0.75, 1.25],
154
+ rotate_factor=60),
155
+ dict(type='TopdownAffine', input_size=codec['input_size']),
156
+ dict(type='mmdet.YOLOXHSVRandomAug'),
157
+ dict(
158
+ type='Albumentation',
159
+ transforms=[
160
+ dict(type='Blur', p=0.1),
161
+ dict(type='MedianBlur', p=0.1),
162
+ dict(
163
+ type='CoarseDropout',
164
+ max_holes=1,
165
+ max_height=0.4,
166
+ max_width=0.4,
167
+ min_holes=1,
168
+ min_height=0.2,
169
+ min_width=0.2,
170
+ p=0.5),
171
+ ]),
172
+ dict(type='GenerateTarget', encoder=codec),
173
+ dict(type='PackPoseInputs')
174
+ ]
175
+
176
+ datasets = []
177
+ dataset_coco=dict(
178
+ type=dataset_type,
179
+ data_root=data_root,
180
+ data_mode=data_mode,
181
+ ann_file='coco/annotations/coco_wholebody_train_v1.0.json',
182
+ data_prefix=dict(img='coco/train2017/'),
183
+ pipeline=[],
184
+ )
185
+ datasets.append(dataset_coco)
186
+
187
+ scene = ['Magic_show', 'Entertainment', 'ConductMusic', 'Online_class',
188
+ 'TalkShow', 'Speech', 'Fitness', 'Interview', 'Olympic', 'TVShow',
189
+ 'Singing', 'SignLanguage', 'Movie', 'LiveVlog', 'VideoConference']
190
+
191
+ for i in range(len(scene)):
192
+ datasets.append(
193
+ dict(
194
+ type=dataset_type,
195
+ data_root=data_root,
196
+ data_mode=data_mode,
197
+ ann_file='UBody/annotations/'+scene[i]+'/keypoint_annotation.json',
198
+ data_prefix=dict(img='UBody/images/'+scene[i]+'/'),
199
+ pipeline=[],
200
+ )
201
+ )
202
+
203
+ # data loaders
204
+ train_dataloader = dict(
205
+ batch_size=32,
206
+ num_workers=10,
207
+ persistent_workers=True,
208
+ sampler=dict(type='DefaultSampler', shuffle=True),
209
+ dataset=dict(
210
+ type='CombinedDataset',
211
+ metainfo=dict(from_file='configs/_base_/datasets/coco_wholebody.py'),
212
+ datasets=datasets,
213
+ pipeline=train_pipeline,
214
+ test_mode=False,
215
+ ))
216
+ val_dataloader = dict(
217
+ batch_size=32,
218
+ num_workers=10,
219
+ persistent_workers=True,
220
+ drop_last=False,
221
+ sampler=dict(type='DefaultSampler', shuffle=False, round_up=False),
222
+ dataset=dict(
223
+ type=dataset_type,
224
+ data_root=data_root,
225
+ data_mode=data_mode,
226
+ ann_file='coco/annotations/coco_wholebody_val_v1.0.json',
227
+ bbox_file=f'{data_root}coco/person_detection_results/'
228
+ 'COCO_val2017_detections_AP_H_56_person.json',
229
+ data_prefix=dict(img='coco/val2017/'),
230
+ test_mode=True,
231
+ pipeline=val_pipeline,
232
+ ))
233
+ test_dataloader = val_dataloader
234
+
235
+ # hooks
236
+ default_hooks = dict(
237
+ checkpoint=dict(
238
+ save_best='coco-wholebody/AP', rule='greater', max_keep_ckpts=1))
239
+
240
+ custom_hooks = [
241
+ dict(
242
+ type='EMAHook',
243
+ ema_type='ExpMomentumEMA',
244
+ momentum=0.0002,
245
+ update_buffers=True,
246
+ priority=49),
247
+ dict(
248
+ type='mmdet.PipelineSwitchHook',
249
+ switch_epoch=max_epochs - stage2_num_epochs,
250
+ switch_pipeline=train_pipeline_stage2)
251
+ ]
252
+
253
+ # evaluators
254
+ val_evaluator = dict(
255
+ type='CocoWholeBodyMetric',
256
+ ann_file=data_root + 'coco/annotations/coco_wholebody_val_v1.0.json')
257
+ test_evaluator = val_evaluator
controlnet_aux/src/controlnet_aux/dwpose/util.py ADDED
@@ -0,0 +1,303 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import numpy as np
3
+ import cv2
4
+
5
+
6
+ eps = 0.01
7
+
8
+
9
+ def smart_resize(x, s):
10
+ Ht, Wt = s
11
+ if x.ndim == 2:
12
+ Ho, Wo = x.shape
13
+ Co = 1
14
+ else:
15
+ Ho, Wo, Co = x.shape
16
+ if Co == 3 or Co == 1:
17
+ k = float(Ht + Wt) / float(Ho + Wo)
18
+ return cv2.resize(x, (int(Wt), int(Ht)), interpolation=cv2.INTER_AREA if k < 1 else cv2.INTER_LANCZOS4)
19
+ else:
20
+ return np.stack([smart_resize(x[:, :, i], s) for i in range(Co)], axis=2)
21
+
22
+
23
+ def smart_resize_k(x, fx, fy):
24
+ if x.ndim == 2:
25
+ Ho, Wo = x.shape
26
+ Co = 1
27
+ else:
28
+ Ho, Wo, Co = x.shape
29
+ Ht, Wt = Ho * fy, Wo * fx
30
+ if Co == 3 or Co == 1:
31
+ k = float(Ht + Wt) / float(Ho + Wo)
32
+ return cv2.resize(x, (int(Wt), int(Ht)), interpolation=cv2.INTER_AREA if k < 1 else cv2.INTER_LANCZOS4)
33
+ else:
34
+ return np.stack([smart_resize_k(x[:, :, i], fx, fy) for i in range(Co)], axis=2)
35
+
36
+
37
+ def padRightDownCorner(img, stride, padValue):
38
+ h = img.shape[0]
39
+ w = img.shape[1]
40
+
41
+ pad = 4 * [None]
42
+ pad[0] = 0 # up
43
+ pad[1] = 0 # left
44
+ pad[2] = 0 if (h % stride == 0) else stride - (h % stride) # down
45
+ pad[3] = 0 if (w % stride == 0) else stride - (w % stride) # right
46
+
47
+ img_padded = img
48
+ pad_up = np.tile(img_padded[0:1, :, :]*0 + padValue, (pad[0], 1, 1))
49
+ img_padded = np.concatenate((pad_up, img_padded), axis=0)
50
+ pad_left = np.tile(img_padded[:, 0:1, :]*0 + padValue, (1, pad[1], 1))
51
+ img_padded = np.concatenate((pad_left, img_padded), axis=1)
52
+ pad_down = np.tile(img_padded[-2:-1, :, :]*0 + padValue, (pad[2], 1, 1))
53
+ img_padded = np.concatenate((img_padded, pad_down), axis=0)
54
+ pad_right = np.tile(img_padded[:, -2:-1, :]*0 + padValue, (1, pad[3], 1))
55
+ img_padded = np.concatenate((img_padded, pad_right), axis=1)
56
+
57
+ return img_padded, pad
58
+
59
+
60
+ def transfer(model, model_weights):
61
+ transfered_model_weights = {}
62
+ for weights_name in model.state_dict().keys():
63
+ transfered_model_weights[weights_name] = model_weights['.'.join(weights_name.split('.')[1:])]
64
+ return transfered_model_weights
65
+
66
+
67
+ def draw_bodypose(canvas, candidate, subset):
68
+ H, W, C = canvas.shape
69
+ candidate = np.array(candidate)
70
+ subset = np.array(subset)
71
+
72
+ stickwidth = 4
73
+
74
+ limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \
75
+ [10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \
76
+ [1, 16], [16, 18], [3, 17], [6, 18]]
77
+
78
+ colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \
79
+ [0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \
80
+ [170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
81
+
82
+ for i in range(17):
83
+ for n in range(len(subset)):
84
+ index = subset[n][np.array(limbSeq[i]) - 1]
85
+ if -1 in index:
86
+ continue
87
+ Y = candidate[index.astype(int), 0] * float(W)
88
+ X = candidate[index.astype(int), 1] * float(H)
89
+ mX = np.mean(X)
90
+ mY = np.mean(Y)
91
+ length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
92
+ angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
93
+ polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
94
+ cv2.fillConvexPoly(canvas, polygon, colors[i])
95
+
96
+ canvas = (canvas * 0.6).astype(np.uint8)
97
+
98
+ for i in range(18):
99
+ for n in range(len(subset)):
100
+ index = int(subset[n][i])
101
+ if index == -1:
102
+ continue
103
+ x, y = candidate[index][0:2]
104
+ x = int(x * W)
105
+ y = int(y * H)
106
+ cv2.circle(canvas, (int(x), int(y)), 4, colors[i], thickness=-1)
107
+
108
+ return canvas
109
+
110
+
111
+ def draw_handpose(canvas, all_hand_peaks):
112
+ import matplotlib
113
+
114
+ H, W, C = canvas.shape
115
+
116
+ edges = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], [0, 9], [9, 10], \
117
+ [10, 11], [11, 12], [0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20]]
118
+
119
+ # (person_number*2, 21, 2)
120
+ for i in range(len(all_hand_peaks)):
121
+ peaks = all_hand_peaks[i]
122
+ peaks = np.array(peaks)
123
+
124
+ for ie, e in enumerate(edges):
125
+
126
+ x1, y1 = peaks[e[0]]
127
+ x2, y2 = peaks[e[1]]
128
+
129
+ x1 = int(x1 * W)
130
+ y1 = int(y1 * H)
131
+ x2 = int(x2 * W)
132
+ y2 = int(y2 * H)
133
+ if x1 > eps and y1 > eps and x2 > eps and y2 > eps:
134
+ cv2.line(canvas, (x1, y1), (x2, y2), matplotlib.colors.hsv_to_rgb([ie / float(len(edges)), 1.0, 1.0]) * 255, thickness=2)
135
+
136
+ for _, keyponit in enumerate(peaks):
137
+ x, y = keyponit
138
+
139
+ x = int(x * W)
140
+ y = int(y * H)
141
+ if x > eps and y > eps:
142
+ cv2.circle(canvas, (x, y), 4, (0, 0, 255), thickness=-1)
143
+ return canvas
144
+
145
+
146
+ def draw_facepose(canvas, all_lmks):
147
+ H, W, C = canvas.shape
148
+ for lmks in all_lmks:
149
+ lmks = np.array(lmks)
150
+ for lmk in lmks:
151
+ x, y = lmk
152
+ x = int(x * W)
153
+ y = int(y * H)
154
+ if x > eps and y > eps:
155
+ cv2.circle(canvas, (x, y), 3, (255, 255, 255), thickness=-1)
156
+ return canvas
157
+
158
+
159
+ # detect hand according to body pose keypoints
160
+ # please refer to https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/hand/handDetector.cpp
161
+ def handDetect(candidate, subset, oriImg):
162
+ # right hand: wrist 4, elbow 3, shoulder 2
163
+ # left hand: wrist 7, elbow 6, shoulder 5
164
+ ratioWristElbow = 0.33
165
+ detect_result = []
166
+ image_height, image_width = oriImg.shape[0:2]
167
+ for person in subset.astype(int):
168
+ # if any of three not detected
169
+ has_left = np.sum(person[[5, 6, 7]] == -1) == 0
170
+ has_right = np.sum(person[[2, 3, 4]] == -1) == 0
171
+ if not (has_left or has_right):
172
+ continue
173
+ hands = []
174
+ #left hand
175
+ if has_left:
176
+ left_shoulder_index, left_elbow_index, left_wrist_index = person[[5, 6, 7]]
177
+ x1, y1 = candidate[left_shoulder_index][:2]
178
+ x2, y2 = candidate[left_elbow_index][:2]
179
+ x3, y3 = candidate[left_wrist_index][:2]
180
+ hands.append([x1, y1, x2, y2, x3, y3, True])
181
+ # right hand
182
+ if has_right:
183
+ right_shoulder_index, right_elbow_index, right_wrist_index = person[[2, 3, 4]]
184
+ x1, y1 = candidate[right_shoulder_index][:2]
185
+ x2, y2 = candidate[right_elbow_index][:2]
186
+ x3, y3 = candidate[right_wrist_index][:2]
187
+ hands.append([x1, y1, x2, y2, x3, y3, False])
188
+
189
+ for x1, y1, x2, y2, x3, y3, is_left in hands:
190
+ # pos_hand = pos_wrist + ratio * (pos_wrist - pos_elbox) = (1 + ratio) * pos_wrist - ratio * pos_elbox
191
+ # handRectangle.x = posePtr[wrist*3] + ratioWristElbow * (posePtr[wrist*3] - posePtr[elbow*3]);
192
+ # handRectangle.y = posePtr[wrist*3+1] + ratioWristElbow * (posePtr[wrist*3+1] - posePtr[elbow*3+1]);
193
+ # const auto distanceWristElbow = getDistance(poseKeypoints, person, wrist, elbow);
194
+ # const auto distanceElbowShoulder = getDistance(poseKeypoints, person, elbow, shoulder);
195
+ # handRectangle.width = 1.5f * fastMax(distanceWristElbow, 0.9f * distanceElbowShoulder);
196
+ x = x3 + ratioWristElbow * (x3 - x2)
197
+ y = y3 + ratioWristElbow * (y3 - y2)
198
+ distanceWristElbow = math.sqrt((x3 - x2) ** 2 + (y3 - y2) ** 2)
199
+ distanceElbowShoulder = math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
200
+ width = 1.5 * max(distanceWristElbow, 0.9 * distanceElbowShoulder)
201
+ # x-y refers to the center --> offset to topLeft point
202
+ # handRectangle.x -= handRectangle.width / 2.f;
203
+ # handRectangle.y -= handRectangle.height / 2.f;
204
+ x -= width / 2
205
+ y -= width / 2 # width = height
206
+ # overflow the image
207
+ if x < 0: x = 0
208
+ if y < 0: y = 0
209
+ width1 = width
210
+ width2 = width
211
+ if x + width > image_width: width1 = image_width - x
212
+ if y + width > image_height: width2 = image_height - y
213
+ width = min(width1, width2)
214
+ # the max hand box value is 20 pixels
215
+ if width >= 20:
216
+ detect_result.append([int(x), int(y), int(width), is_left])
217
+
218
+ '''
219
+ return value: [[x, y, w, True if left hand else False]].
220
+ width=height since the network require squared input.
221
+ x, y is the coordinate of top left
222
+ '''
223
+ return detect_result
224
+
225
+
226
+ # Written by Lvmin
227
+ def faceDetect(candidate, subset, oriImg):
228
+ # left right eye ear 14 15 16 17
229
+ detect_result = []
230
+ image_height, image_width = oriImg.shape[0:2]
231
+ for person in subset.astype(int):
232
+ has_head = person[0] > -1
233
+ if not has_head:
234
+ continue
235
+
236
+ has_left_eye = person[14] > -1
237
+ has_right_eye = person[15] > -1
238
+ has_left_ear = person[16] > -1
239
+ has_right_ear = person[17] > -1
240
+
241
+ if not (has_left_eye or has_right_eye or has_left_ear or has_right_ear):
242
+ continue
243
+
244
+ head, left_eye, right_eye, left_ear, right_ear = person[[0, 14, 15, 16, 17]]
245
+
246
+ width = 0.0
247
+ x0, y0 = candidate[head][:2]
248
+
249
+ if has_left_eye:
250
+ x1, y1 = candidate[left_eye][:2]
251
+ d = max(abs(x0 - x1), abs(y0 - y1))
252
+ width = max(width, d * 3.0)
253
+
254
+ if has_right_eye:
255
+ x1, y1 = candidate[right_eye][:2]
256
+ d = max(abs(x0 - x1), abs(y0 - y1))
257
+ width = max(width, d * 3.0)
258
+
259
+ if has_left_ear:
260
+ x1, y1 = candidate[left_ear][:2]
261
+ d = max(abs(x0 - x1), abs(y0 - y1))
262
+ width = max(width, d * 1.5)
263
+
264
+ if has_right_ear:
265
+ x1, y1 = candidate[right_ear][:2]
266
+ d = max(abs(x0 - x1), abs(y0 - y1))
267
+ width = max(width, d * 1.5)
268
+
269
+ x, y = x0, y0
270
+
271
+ x -= width
272
+ y -= width
273
+
274
+ if x < 0:
275
+ x = 0
276
+
277
+ if y < 0:
278
+ y = 0
279
+
280
+ width1 = width * 2
281
+ width2 = width * 2
282
+
283
+ if x + width > image_width:
284
+ width1 = image_width - x
285
+
286
+ if y + width > image_height:
287
+ width2 = image_height - y
288
+
289
+ width = min(width1, width2)
290
+
291
+ if width >= 20:
292
+ detect_result.append([int(x), int(y), int(width)])
293
+
294
+ return detect_result
295
+
296
+
297
+ # get max index of 2d array
298
+ def npmax(array):
299
+ arrayindex = array.argmax(1)
300
+ arrayvalue = array.max(1)
301
+ i = arrayvalue.argmax()
302
+ j = arrayindex[i]
303
+ return i, j
controlnet_aux/src/controlnet_aux/dwpose/wholebody.py ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) OpenMMLab. All rights reserved.
2
+ import os
3
+ import numpy as np
4
+ import warnings
5
+
6
+ try:
7
+ import mmcv
8
+ except ImportError:
9
+ warnings.warn(
10
+ "The module 'mmcv' is not installed. The package will have limited functionality. Please install it using the command: mim install 'mmcv>=2.0.1'"
11
+ )
12
+
13
+ try:
14
+ from mmpose.apis import inference_topdown
15
+ from mmpose.apis import init_model as init_pose_estimator
16
+ from mmpose.evaluation.functional import nms
17
+ from mmpose.utils import adapt_mmdet_pipeline
18
+ from mmpose.structures import merge_data_samples
19
+ except ImportError:
20
+ warnings.warn(
21
+ "The module 'mmpose' is not installed. The package will have limited functionality. Please install it using the command: mim install 'mmpose>=1.1.0'"
22
+ )
23
+
24
+ try:
25
+ from mmdet.apis import inference_detector, init_detector
26
+ except ImportError:
27
+ warnings.warn(
28
+ "The module 'mmdet' is not installed. The package will have limited functionality. Please install it using the command: mim install 'mmdet>=3.1.0'"
29
+ )
30
+
31
+
32
+ class Wholebody:
33
+ def __init__(self,
34
+ det_config=None, det_ckpt=None,
35
+ pose_config=None, pose_ckpt=None,
36
+ device="cpu"):
37
+
38
+ if det_config is None:
39
+ det_config = os.path.join(os.path.dirname(__file__), "yolox_config/yolox_l_8xb8-300e_coco.py")
40
+
41
+ if pose_config is None:
42
+ pose_config = os.path.join(os.path.dirname(__file__), "dwpose_config/dwpose-l_384x288.py")
43
+
44
+ if det_ckpt is None:
45
+ det_ckpt = 'https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_l_8x8_300e_coco/yolox_l_8x8_300e_coco_20211126_140236-d3bd2b23.pth'
46
+ # det_ckpt = '~/.cache/torch/hub/checkpoints/yolox_l_8x8_300e_coco_20211126_140236-d3bd2b23.pth'
47
+
48
+ if pose_ckpt is None:
49
+ pose_ckpt = "https://huggingface.co/wanghaofan/dw-ll_ucoco_384/resolve/main/dw-ll_ucoco_384.pth"
50
+ # pose_ckpt = "~/.cache/torch/hub/checkpoints/dw-ll_ucoco_384.pth"
51
+
52
+ # build detector
53
+ self.detector = init_detector(det_config, det_ckpt, device=device)
54
+ self.detector.cfg = adapt_mmdet_pipeline(self.detector.cfg)
55
+
56
+ # build pose estimator
57
+ self.pose_estimator = init_pose_estimator(
58
+ pose_config,
59
+ pose_ckpt,
60
+ device=device)
61
+
62
+ def to(self, device):
63
+ self.detector.to(device)
64
+ self.pose_estimator.to(device)
65
+ return self
66
+
67
+ def __call__(self, oriImg):
68
+ # predict bbox
69
+ det_result = inference_detector(self.detector, oriImg)
70
+ pred_instance = det_result.pred_instances.cpu().numpy()
71
+ bboxes = np.concatenate(
72
+ (pred_instance.bboxes, pred_instance.scores[:, None]), axis=1)
73
+ bboxes = bboxes[np.logical_and(pred_instance.labels == 0,
74
+ pred_instance.scores > 0.5)]
75
+
76
+ # set NMS threshold
77
+ bboxes = bboxes[nms(bboxes, 0.7), :4]
78
+
79
+ # predict keypoints
80
+ if len(bboxes) == 0:
81
+ pose_results = inference_topdown(self.pose_estimator, oriImg)
82
+ else:
83
+ pose_results = inference_topdown(self.pose_estimator, oriImg, bboxes)
84
+ preds = merge_data_samples(pose_results)
85
+ preds = preds.pred_instances
86
+
87
+ # preds = pose_results[0].pred_instances
88
+ keypoints = preds.get('transformed_keypoints',
89
+ preds.keypoints)
90
+ if 'keypoint_scores' in preds:
91
+ scores = preds.keypoint_scores
92
+ else:
93
+ scores = np.ones(keypoints.shape[:-1])
94
+
95
+ if 'keypoints_visible' in preds:
96
+ visible = preds.keypoints_visible
97
+ else:
98
+ visible = np.ones(keypoints.shape[:-1])
99
+ keypoints_info = np.concatenate(
100
+ (keypoints, scores[..., None], visible[..., None]),
101
+ axis=-1)
102
+ # compute neck joint
103
+ neck = np.mean(keypoints_info[:, [5, 6]], axis=1)
104
+ # neck score when visualizing pred
105
+ neck[:, 2:4] = np.logical_and(
106
+ keypoints_info[:, 5, 2:4] > 0.3,
107
+ keypoints_info[:, 6, 2:4] > 0.3).astype(int)
108
+ new_keypoints_info = np.insert(
109
+ keypoints_info, 17, neck, axis=1)
110
+ mmpose_idx = [
111
+ 17, 6, 8, 10, 7, 9, 12, 14, 16, 13, 15, 2, 1, 4, 3
112
+ ]
113
+ openpose_idx = [
114
+ 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17
115
+ ]
116
+ new_keypoints_info[:, openpose_idx] = \
117
+ new_keypoints_info[:, mmpose_idx]
118
+ keypoints_info = new_keypoints_info
119
+
120
+ keypoints, scores, visible = keypoints_info[
121
+ ..., :2], keypoints_info[..., 2], keypoints_info[..., 3]
122
+
123
+ return keypoints, scores
controlnet_aux/src/controlnet_aux/dwpose/yolox_config/yolox_l_8xb8-300e_coco.py ADDED
@@ -0,0 +1,245 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ img_scale = (640, 640) # width, height
2
+
3
+ # model settings
4
+ model = dict(
5
+ type='YOLOX',
6
+ data_preprocessor=dict(
7
+ type='DetDataPreprocessor',
8
+ pad_size_divisor=32,
9
+ batch_augments=[
10
+ dict(
11
+ type='BatchSyncRandomResize',
12
+ random_size_range=(480, 800),
13
+ size_divisor=32,
14
+ interval=10)
15
+ ]),
16
+ backbone=dict(
17
+ type='CSPDarknet',
18
+ deepen_factor=1.0,
19
+ widen_factor=1.0,
20
+ out_indices=(2, 3, 4),
21
+ use_depthwise=False,
22
+ spp_kernal_sizes=(5, 9, 13),
23
+ norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
24
+ act_cfg=dict(type='Swish'),
25
+ ),
26
+ neck=dict(
27
+ type='YOLOXPAFPN',
28
+ in_channels=[256, 512, 1024],
29
+ out_channels=256,
30
+ num_csp_blocks=3,
31
+ use_depthwise=False,
32
+ upsample_cfg=dict(scale_factor=2, mode='nearest'),
33
+ norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
34
+ act_cfg=dict(type='Swish')),
35
+ bbox_head=dict(
36
+ type='YOLOXHead',
37
+ num_classes=80,
38
+ in_channels=256,
39
+ feat_channels=256,
40
+ stacked_convs=2,
41
+ strides=(8, 16, 32),
42
+ use_depthwise=False,
43
+ norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
44
+ act_cfg=dict(type='Swish'),
45
+ loss_cls=dict(
46
+ type='CrossEntropyLoss',
47
+ use_sigmoid=True,
48
+ reduction='sum',
49
+ loss_weight=1.0),
50
+ loss_bbox=dict(
51
+ type='IoULoss',
52
+ mode='square',
53
+ eps=1e-16,
54
+ reduction='sum',
55
+ loss_weight=5.0),
56
+ loss_obj=dict(
57
+ type='CrossEntropyLoss',
58
+ use_sigmoid=True,
59
+ reduction='sum',
60
+ loss_weight=1.0),
61
+ loss_l1=dict(type='L1Loss', reduction='sum', loss_weight=1.0)),
62
+ train_cfg=dict(assigner=dict(type='SimOTAAssigner', center_radius=2.5)),
63
+ # In order to align the source code, the threshold of the val phase is
64
+ # 0.01, and the threshold of the test phase is 0.001.
65
+ test_cfg=dict(score_thr=0.01, nms=dict(type='nms', iou_threshold=0.65)))
66
+
67
+ # dataset settings
68
+ data_root = 'data/coco/'
69
+ dataset_type = 'CocoDataset'
70
+
71
+ # Example to use different file client
72
+ # Method 1: simply set the data root and let the file I/O module
73
+ # automatically infer from prefix (not support LMDB and Memcache yet)
74
+
75
+ # data_root = 's3://openmmlab/datasets/detection/coco/'
76
+
77
+ # Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6
78
+ # backend_args = dict(
79
+ # backend='petrel',
80
+ # path_mapping=dict({
81
+ # './data/': 's3://openmmlab/datasets/detection/',
82
+ # 'data/': 's3://openmmlab/datasets/detection/'
83
+ # }))
84
+ backend_args = None
85
+
86
+ train_pipeline = [
87
+ dict(type='Mosaic', img_scale=img_scale, pad_val=114.0),
88
+ dict(
89
+ type='RandomAffine',
90
+ scaling_ratio_range=(0.1, 2),
91
+ # img_scale is (width, height)
92
+ border=(-img_scale[0] // 2, -img_scale[1] // 2)),
93
+ dict(
94
+ type='MixUp',
95
+ img_scale=img_scale,
96
+ ratio_range=(0.8, 1.6),
97
+ pad_val=114.0),
98
+ dict(type='YOLOXHSVRandomAug'),
99
+ dict(type='RandomFlip', prob=0.5),
100
+ # According to the official implementation, multi-scale
101
+ # training is not considered here but in the
102
+ # 'mmdet/models/detectors/yolox.py'.
103
+ # Resize and Pad are for the last 15 epochs when Mosaic,
104
+ # RandomAffine, and MixUp are closed by YOLOXModeSwitchHook.
105
+ dict(type='Resize', scale=img_scale, keep_ratio=True),
106
+ dict(
107
+ type='Pad',
108
+ pad_to_square=True,
109
+ # If the image is three-channel, the pad value needs
110
+ # to be set separately for each channel.
111
+ pad_val=dict(img=(114.0, 114.0, 114.0))),
112
+ dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1), keep_empty=False),
113
+ dict(type='PackDetInputs')
114
+ ]
115
+
116
+ train_dataset = dict(
117
+ # use MultiImageMixDataset wrapper to support mosaic and mixup
118
+ type='MultiImageMixDataset',
119
+ dataset=dict(
120
+ type=dataset_type,
121
+ data_root=data_root,
122
+ ann_file='annotations/instances_train2017.json',
123
+ data_prefix=dict(img='train2017/'),
124
+ pipeline=[
125
+ dict(type='LoadImageFromFile', backend_args=backend_args),
126
+ dict(type='LoadAnnotations', with_bbox=True)
127
+ ],
128
+ filter_cfg=dict(filter_empty_gt=False, min_size=32),
129
+ backend_args=backend_args),
130
+ pipeline=train_pipeline)
131
+
132
+ test_pipeline = [
133
+ dict(type='LoadImageFromFile', backend_args=backend_args),
134
+ dict(type='Resize', scale=img_scale, keep_ratio=True),
135
+ dict(
136
+ type='Pad',
137
+ pad_to_square=True,
138
+ pad_val=dict(img=(114.0, 114.0, 114.0))),
139
+ dict(type='LoadAnnotations', with_bbox=True),
140
+ dict(
141
+ type='PackDetInputs',
142
+ meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
143
+ 'scale_factor'))
144
+ ]
145
+
146
+ train_dataloader = dict(
147
+ batch_size=8,
148
+ num_workers=4,
149
+ persistent_workers=True,
150
+ sampler=dict(type='DefaultSampler', shuffle=True),
151
+ dataset=train_dataset)
152
+ val_dataloader = dict(
153
+ batch_size=8,
154
+ num_workers=4,
155
+ persistent_workers=True,
156
+ drop_last=False,
157
+ sampler=dict(type='DefaultSampler', shuffle=False),
158
+ dataset=dict(
159
+ type=dataset_type,
160
+ data_root=data_root,
161
+ ann_file='annotations/instances_val2017.json',
162
+ data_prefix=dict(img='val2017/'),
163
+ test_mode=True,
164
+ pipeline=test_pipeline,
165
+ backend_args=backend_args))
166
+ test_dataloader = val_dataloader
167
+
168
+ val_evaluator = dict(
169
+ type='CocoMetric',
170
+ ann_file=data_root + 'annotations/instances_val2017.json',
171
+ metric='bbox',
172
+ backend_args=backend_args)
173
+ test_evaluator = val_evaluator
174
+
175
+ # training settings
176
+ max_epochs = 300
177
+ num_last_epochs = 15
178
+ interval = 10
179
+
180
+ train_cfg = dict(max_epochs=max_epochs, val_interval=interval)
181
+
182
+ # optimizer
183
+ # default 8 gpu
184
+ base_lr = 0.01
185
+ optim_wrapper = dict(
186
+ type='OptimWrapper',
187
+ optimizer=dict(
188
+ type='SGD', lr=base_lr, momentum=0.9, weight_decay=5e-4,
189
+ nesterov=True),
190
+ paramwise_cfg=dict(norm_decay_mult=0., bias_decay_mult=0.))
191
+
192
+ # learning rate
193
+ param_scheduler = [
194
+ dict(
195
+ # use quadratic formula to warm up 5 epochs
196
+ # and lr is updated by iteration
197
+ # TODO: fix default scope in get function
198
+ type='mmdet.QuadraticWarmupLR',
199
+ by_epoch=True,
200
+ begin=0,
201
+ end=5,
202
+ convert_to_iter_based=True),
203
+ dict(
204
+ # use cosine lr from 5 to 285 epoch
205
+ type='CosineAnnealingLR',
206
+ eta_min=base_lr * 0.05,
207
+ begin=5,
208
+ T_max=max_epochs - num_last_epochs,
209
+ end=max_epochs - num_last_epochs,
210
+ by_epoch=True,
211
+ convert_to_iter_based=True),
212
+ dict(
213
+ # use fixed lr during last 15 epochs
214
+ type='ConstantLR',
215
+ by_epoch=True,
216
+ factor=1,
217
+ begin=max_epochs - num_last_epochs,
218
+ end=max_epochs,
219
+ )
220
+ ]
221
+
222
+ default_hooks = dict(
223
+ checkpoint=dict(
224
+ interval=interval,
225
+ max_keep_ckpts=3 # only keep latest 3 checkpoints
226
+ ))
227
+
228
+ custom_hooks = [
229
+ dict(
230
+ type='YOLOXModeSwitchHook',
231
+ num_last_epochs=num_last_epochs,
232
+ priority=48),
233
+ dict(type='SyncNormHook', priority=48),
234
+ dict(
235
+ type='EMAHook',
236
+ ema_type='ExpMomentumEMA',
237
+ momentum=0.0001,
238
+ update_buffers=True,
239
+ priority=49)
240
+ ]
241
+
242
+ # NOTE: `auto_scale_lr` is for automatically scaling LR,
243
+ # USER SHOULD NOT CHANGE ITS VALUES.
244
+ # base_batch_size = (8 GPUs) x (8 samples per GPU)
245
+ auto_scale_lr = dict(base_batch_size=64)
controlnet_aux/src/controlnet_aux/hed/__init__.py ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This is an improved version and model of HED edge detection with Apache License, Version 2.0.
2
+ # Please use this implementation in your products
3
+ # This implementation may produce slightly different results from Saining Xie's official implementations,
4
+ # but it generates smoother edges and is more suitable for ControlNet as well as other image-to-image translations.
5
+ # Different from official models and other implementations, this is an RGB-input model (rather than BGR)
6
+ # and in this way it works better for gradio's RGB protocol
7
+
8
+ import os
9
+ import warnings
10
+
11
+ import cv2
12
+ import numpy as np
13
+ import torch
14
+ from einops import rearrange
15
+ from huggingface_hub import hf_hub_download
16
+ from PIL import Image
17
+
18
+ from ..util import HWC3, nms, resize_image, safe_step
19
+
20
+
21
+ class DoubleConvBlock(torch.nn.Module):
22
+ def __init__(self, input_channel, output_channel, layer_number):
23
+ super().__init__()
24
+ self.convs = torch.nn.Sequential()
25
+ self.convs.append(torch.nn.Conv2d(in_channels=input_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1))
26
+ for i in range(1, layer_number):
27
+ self.convs.append(torch.nn.Conv2d(in_channels=output_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1))
28
+ self.projection = torch.nn.Conv2d(in_channels=output_channel, out_channels=1, kernel_size=(1, 1), stride=(1, 1), padding=0)
29
+
30
+ def __call__(self, x, down_sampling=False):
31
+ h = x
32
+ if down_sampling:
33
+ h = torch.nn.functional.max_pool2d(h, kernel_size=(2, 2), stride=(2, 2))
34
+ for conv in self.convs:
35
+ h = conv(h)
36
+ h = torch.nn.functional.relu(h)
37
+ return h, self.projection(h)
38
+
39
+
40
+ class ControlNetHED_Apache2(torch.nn.Module):
41
+ def __init__(self):
42
+ super().__init__()
43
+ self.norm = torch.nn.Parameter(torch.zeros(size=(1, 3, 1, 1)))
44
+ self.block1 = DoubleConvBlock(input_channel=3, output_channel=64, layer_number=2)
45
+ self.block2 = DoubleConvBlock(input_channel=64, output_channel=128, layer_number=2)
46
+ self.block3 = DoubleConvBlock(input_channel=128, output_channel=256, layer_number=3)
47
+ self.block4 = DoubleConvBlock(input_channel=256, output_channel=512, layer_number=3)
48
+ self.block5 = DoubleConvBlock(input_channel=512, output_channel=512, layer_number=3)
49
+
50
+ def __call__(self, x):
51
+ h = x - self.norm
52
+ h, projection1 = self.block1(h)
53
+ h, projection2 = self.block2(h, down_sampling=True)
54
+ h, projection3 = self.block3(h, down_sampling=True)
55
+ h, projection4 = self.block4(h, down_sampling=True)
56
+ h, projection5 = self.block5(h, down_sampling=True)
57
+ return projection1, projection2, projection3, projection4, projection5
58
+
59
+ class HEDdetector:
60
+ def __init__(self, netNetwork):
61
+ self.netNetwork = netNetwork
62
+
63
+ @classmethod
64
+ def from_pretrained(cls, pretrained_model_or_path, filename=None, cache_dir=None):
65
+ filename = filename or "ControlNetHED.pth"
66
+
67
+ if os.path.isdir(pretrained_model_or_path):
68
+ model_path = os.path.join(pretrained_model_or_path, filename)
69
+ else:
70
+ model_path = hf_hub_download(pretrained_model_or_path, filename, cache_dir=cache_dir)
71
+
72
+ netNetwork = ControlNetHED_Apache2()
73
+ netNetwork.load_state_dict(torch.load(model_path, map_location='cpu'))
74
+ netNetwork.float().eval()
75
+
76
+ return cls(netNetwork)
77
+
78
+ def to(self, device):
79
+ self.netNetwork.to(device)
80
+ return self
81
+
82
+ def __call__(self, input_image, detect_resolution=512, image_resolution=512, safe=False, output_type="pil", scribble=False, **kwargs):
83
+ if "return_pil" in kwargs:
84
+ warnings.warn("return_pil is deprecated. Use output_type instead.", DeprecationWarning)
85
+ output_type = "pil" if kwargs["return_pil"] else "np"
86
+ if type(output_type) is bool:
87
+ warnings.warn("Passing `True` or `False` to `output_type` is deprecated and will raise an error in future versions")
88
+ if output_type:
89
+ output_type = "pil"
90
+
91
+ device = next(iter(self.netNetwork.parameters())).device
92
+ if not isinstance(input_image, np.ndarray):
93
+ input_image = np.array(input_image, dtype=np.uint8)
94
+
95
+ input_image = HWC3(input_image)
96
+ input_image = resize_image(input_image, detect_resolution)
97
+
98
+ assert input_image.ndim == 3
99
+ H, W, C = input_image.shape
100
+ with torch.no_grad():
101
+ image_hed = torch.from_numpy(input_image.copy()).float().to(device)
102
+ image_hed = rearrange(image_hed, 'h w c -> 1 c h w')
103
+ edges = self.netNetwork(image_hed)
104
+ edges = [e.detach().cpu().numpy().astype(np.float32)[0, 0] for e in edges]
105
+ edges = [cv2.resize(e, (W, H), interpolation=cv2.INTER_LINEAR) for e in edges]
106
+ edges = np.stack(edges, axis=2)
107
+ edge = 1 / (1 + np.exp(-np.mean(edges, axis=2).astype(np.float64)))
108
+ if safe:
109
+ edge = safe_step(edge)
110
+ edge = (edge * 255.0).clip(0, 255).astype(np.uint8)
111
+
112
+ detected_map = edge
113
+ detected_map = HWC3(detected_map)
114
+
115
+ img = resize_image(input_image, image_resolution)
116
+ H, W, C = img.shape
117
+
118
+ detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
119
+
120
+ if scribble:
121
+ detected_map = nms(detected_map, 127, 3.0)
122
+ detected_map = cv2.GaussianBlur(detected_map, (0, 0), 3.0)
123
+ detected_map[detected_map > 4] = 255
124
+ detected_map[detected_map < 255] = 0
125
+
126
+ if output_type == "pil":
127
+ detected_map = Image.fromarray(detected_map)
128
+
129
+ return detected_map
controlnet_aux/src/controlnet_aux/leres/__init__.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ import cv2
4
+ import numpy as np
5
+ import torch
6
+ from huggingface_hub import hf_hub_download
7
+ from PIL import Image
8
+
9
+ from ..util import HWC3, resize_image
10
+ from .leres.depthmap import estimateboost, estimateleres
11
+ from .leres.multi_depth_model_woauxi import RelDepthModel
12
+ from .leres.net_tools import strip_prefix_if_present
13
+ from .pix2pix.models.pix2pix4depth_model import Pix2Pix4DepthModel
14
+ from .pix2pix.options.test_options import TestOptions
15
+
16
+
17
+ class LeresDetector:
18
+ def __init__(self, model, pix2pixmodel):
19
+ self.model = model
20
+ self.pix2pixmodel = pix2pixmodel
21
+
22
+ @classmethod
23
+ def from_pretrained(cls, pretrained_model_or_path, filename=None, pix2pix_filename=None, cache_dir=None):
24
+ filename = filename or "res101.pth"
25
+ pix2pix_filename = pix2pix_filename or "latest_net_G.pth"
26
+
27
+ if os.path.isdir(pretrained_model_or_path):
28
+ model_path = os.path.join(pretrained_model_or_path, filename)
29
+ else:
30
+ model_path = hf_hub_download(pretrained_model_or_path, filename, cache_dir=cache_dir)
31
+
32
+ checkpoint = torch.load(model_path, map_location=torch.device('cpu'))
33
+
34
+ model = RelDepthModel(backbone='resnext101')
35
+ model.load_state_dict(strip_prefix_if_present(checkpoint['depth_model'], "module."), strict=True)
36
+ del checkpoint
37
+
38
+ if os.path.isdir(pretrained_model_or_path):
39
+ model_path = os.path.join(pretrained_model_or_path, pix2pix_filename)
40
+ else:
41
+ model_path = hf_hub_download(pretrained_model_or_path, pix2pix_filename, cache_dir=cache_dir)
42
+
43
+ opt = TestOptions().parse()
44
+ if not torch.cuda.is_available():
45
+ opt.gpu_ids = [] # cpu mode
46
+ pix2pixmodel = Pix2Pix4DepthModel(opt)
47
+ pix2pixmodel.save_dir = os.path.dirname(model_path)
48
+ pix2pixmodel.load_networks('latest')
49
+ pix2pixmodel.eval()
50
+
51
+ return cls(model, pix2pixmodel)
52
+
53
+ def to(self, device):
54
+ self.model.to(device)
55
+ # TODO - refactor pix2pix implementation to support device migration
56
+ # self.pix2pixmodel.to(device)
57
+ return self
58
+
59
+ def __call__(self, input_image, thr_a=0, thr_b=0, boost=False, detect_resolution=512, image_resolution=512, output_type="pil"):
60
+ device = next(iter(self.model.parameters())).device
61
+ if not isinstance(input_image, np.ndarray):
62
+ input_image = np.array(input_image, dtype=np.uint8)
63
+
64
+ input_image = HWC3(input_image)
65
+ input_image = resize_image(input_image, detect_resolution)
66
+
67
+ assert input_image.ndim == 3
68
+ height, width, dim = input_image.shape
69
+
70
+ with torch.no_grad():
71
+
72
+ if boost:
73
+ depth = estimateboost(input_image, self.model, 0, self.pix2pixmodel, max(width, height))
74
+ else:
75
+ depth = estimateleres(input_image, self.model, width, height)
76
+
77
+ numbytes=2
78
+ depth_min = depth.min()
79
+ depth_max = depth.max()
80
+ max_val = (2**(8*numbytes))-1
81
+
82
+ # check output before normalizing and mapping to 16 bit
83
+ if depth_max - depth_min > np.finfo("float").eps:
84
+ out = max_val * (depth - depth_min) / (depth_max - depth_min)
85
+ else:
86
+ out = np.zeros(depth.shape)
87
+
88
+ # single channel, 16 bit image
89
+ depth_image = out.astype("uint16")
90
+
91
+ # convert to uint8
92
+ depth_image = cv2.convertScaleAbs(depth_image, alpha=(255.0/65535.0))
93
+
94
+ # remove near
95
+ if thr_a != 0:
96
+ thr_a = ((thr_a/100)*255)
97
+ depth_image = cv2.threshold(depth_image, thr_a, 255, cv2.THRESH_TOZERO)[1]
98
+
99
+ # invert image
100
+ depth_image = cv2.bitwise_not(depth_image)
101
+
102
+ # remove bg
103
+ if thr_b != 0:
104
+ thr_b = ((thr_b/100)*255)
105
+ depth_image = cv2.threshold(depth_image, thr_b, 255, cv2.THRESH_TOZERO)[1]
106
+
107
+ detected_map = depth_image
108
+ detected_map = HWC3(detected_map)
109
+
110
+ img = resize_image(input_image, image_resolution)
111
+ H, W, C = img.shape
112
+
113
+ detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
114
+
115
+ if output_type == "pil":
116
+ detected_map = Image.fromarray(detected_map)
117
+
118
+ return detected_map
controlnet_aux/src/controlnet_aux/leres/leres/LICENSE ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ https://github.com/thygate/stable-diffusion-webui-depthmap-script
2
+
3
+ MIT License
4
+
5
+ Copyright (c) 2023 Bob Thiry
6
+
7
+ Permission is hereby granted, free of charge, to any person obtaining a copy
8
+ of this software and associated documentation files (the "Software"), to deal
9
+ in the Software without restriction, including without limitation the rights
10
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11
+ copies of the Software, and to permit persons to whom the Software is
12
+ furnished to do so, subject to the following conditions:
13
+
14
+ The above copyright notice and this permission notice shall be included in all
15
+ copies or substantial portions of the Software.
16
+
17
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
20
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23
+ SOFTWARE.
controlnet_aux/src/controlnet_aux/leres/leres/Resnet.py ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ import torch.nn as NN
3
+
4
+ __all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
5
+ 'resnet152']
6
+
7
+
8
+ model_urls = {
9
+ 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
10
+ 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
11
+ 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
12
+ 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
13
+ 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
14
+ }
15
+
16
+
17
+ def conv3x3(in_planes, out_planes, stride=1):
18
+ """3x3 convolution with padding"""
19
+ return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
20
+ padding=1, bias=False)
21
+
22
+
23
+ class BasicBlock(nn.Module):
24
+ expansion = 1
25
+
26
+ def __init__(self, inplanes, planes, stride=1, downsample=None):
27
+ super(BasicBlock, self).__init__()
28
+ self.conv1 = conv3x3(inplanes, planes, stride)
29
+ self.bn1 = NN.BatchNorm2d(planes) #NN.BatchNorm2d
30
+ self.relu = nn.ReLU(inplace=True)
31
+ self.conv2 = conv3x3(planes, planes)
32
+ self.bn2 = NN.BatchNorm2d(planes) #NN.BatchNorm2d
33
+ self.downsample = downsample
34
+ self.stride = stride
35
+
36
+ def forward(self, x):
37
+ residual = x
38
+
39
+ out = self.conv1(x)
40
+ out = self.bn1(out)
41
+ out = self.relu(out)
42
+
43
+ out = self.conv2(out)
44
+ out = self.bn2(out)
45
+
46
+ if self.downsample is not None:
47
+ residual = self.downsample(x)
48
+
49
+ out += residual
50
+ out = self.relu(out)
51
+
52
+ return out
53
+
54
+
55
+ class Bottleneck(nn.Module):
56
+ expansion = 4
57
+
58
+ def __init__(self, inplanes, planes, stride=1, downsample=None):
59
+ super(Bottleneck, self).__init__()
60
+ self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
61
+ self.bn1 = NN.BatchNorm2d(planes) #NN.BatchNorm2d
62
+ self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
63
+ padding=1, bias=False)
64
+ self.bn2 = NN.BatchNorm2d(planes) #NN.BatchNorm2d
65
+ self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
66
+ self.bn3 = NN.BatchNorm2d(planes * self.expansion) #NN.BatchNorm2d
67
+ self.relu = nn.ReLU(inplace=True)
68
+ self.downsample = downsample
69
+ self.stride = stride
70
+
71
+ def forward(self, x):
72
+ residual = x
73
+
74
+ out = self.conv1(x)
75
+ out = self.bn1(out)
76
+ out = self.relu(out)
77
+
78
+ out = self.conv2(out)
79
+ out = self.bn2(out)
80
+ out = self.relu(out)
81
+
82
+ out = self.conv3(out)
83
+ out = self.bn3(out)
84
+
85
+ if self.downsample is not None:
86
+ residual = self.downsample(x)
87
+
88
+ out += residual
89
+ out = self.relu(out)
90
+
91
+ return out
92
+
93
+
94
+ class ResNet(nn.Module):
95
+
96
+ def __init__(self, block, layers, num_classes=1000):
97
+ self.inplanes = 64
98
+ super(ResNet, self).__init__()
99
+ self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
100
+ bias=False)
101
+ self.bn1 = NN.BatchNorm2d(64) #NN.BatchNorm2d
102
+ self.relu = nn.ReLU(inplace=True)
103
+ self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
104
+ self.layer1 = self._make_layer(block, 64, layers[0])
105
+ self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
106
+ self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
107
+ self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
108
+ #self.avgpool = nn.AvgPool2d(7, stride=1)
109
+ #self.fc = nn.Linear(512 * block.expansion, num_classes)
110
+
111
+ for m in self.modules():
112
+ if isinstance(m, nn.Conv2d):
113
+ nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
114
+ elif isinstance(m, nn.BatchNorm2d):
115
+ nn.init.constant_(m.weight, 1)
116
+ nn.init.constant_(m.bias, 0)
117
+
118
+ def _make_layer(self, block, planes, blocks, stride=1):
119
+ downsample = None
120
+ if stride != 1 or self.inplanes != planes * block.expansion:
121
+ downsample = nn.Sequential(
122
+ nn.Conv2d(self.inplanes, planes * block.expansion,
123
+ kernel_size=1, stride=stride, bias=False),
124
+ NN.BatchNorm2d(planes * block.expansion), #NN.BatchNorm2d
125
+ )
126
+
127
+ layers = []
128
+ layers.append(block(self.inplanes, planes, stride, downsample))
129
+ self.inplanes = planes * block.expansion
130
+ for i in range(1, blocks):
131
+ layers.append(block(self.inplanes, planes))
132
+
133
+ return nn.Sequential(*layers)
134
+
135
+ def forward(self, x):
136
+ features = []
137
+
138
+ x = self.conv1(x)
139
+ x = self.bn1(x)
140
+ x = self.relu(x)
141
+ x = self.maxpool(x)
142
+
143
+ x = self.layer1(x)
144
+ features.append(x)
145
+ x = self.layer2(x)
146
+ features.append(x)
147
+ x = self.layer3(x)
148
+ features.append(x)
149
+ x = self.layer4(x)
150
+ features.append(x)
151
+
152
+ return features
153
+
154
+
155
+ def resnet18(pretrained=True, **kwargs):
156
+ """Constructs a ResNet-18 model.
157
+ Args:
158
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
159
+ """
160
+ model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
161
+ return model
162
+
163
+
164
+ def resnet34(pretrained=True, **kwargs):
165
+ """Constructs a ResNet-34 model.
166
+ Args:
167
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
168
+ """
169
+ model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
170
+ return model
171
+
172
+
173
+ def resnet50(pretrained=True, **kwargs):
174
+ """Constructs a ResNet-50 model.
175
+ Args:
176
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
177
+ """
178
+ model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
179
+
180
+ return model
181
+
182
+
183
+ def resnet101(pretrained=True, **kwargs):
184
+ """Constructs a ResNet-101 model.
185
+ Args:
186
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
187
+ """
188
+ model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
189
+
190
+ return model
191
+
192
+
193
+ def resnet152(pretrained=True, **kwargs):
194
+ """Constructs a ResNet-152 model.
195
+ Args:
196
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
197
+ """
198
+ model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
199
+ return model
controlnet_aux/src/controlnet_aux/leres/leres/Resnext_torch.py ADDED
@@ -0,0 +1,237 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding: utf-8
3
+ import torch.nn as nn
4
+
5
+ try:
6
+ from urllib import urlretrieve
7
+ except ImportError:
8
+ from urllib.request import urlretrieve
9
+
10
+ __all__ = ['resnext101_32x8d']
11
+
12
+
13
+ model_urls = {
14
+ 'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth',
15
+ 'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth',
16
+ }
17
+
18
+
19
+ def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
20
+ """3x3 convolution with padding"""
21
+ return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
22
+ padding=dilation, groups=groups, bias=False, dilation=dilation)
23
+
24
+
25
+ def conv1x1(in_planes, out_planes, stride=1):
26
+ """1x1 convolution"""
27
+ return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
28
+
29
+
30
+ class BasicBlock(nn.Module):
31
+ expansion = 1
32
+
33
+ def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
34
+ base_width=64, dilation=1, norm_layer=None):
35
+ super(BasicBlock, self).__init__()
36
+ if norm_layer is None:
37
+ norm_layer = nn.BatchNorm2d
38
+ if groups != 1 or base_width != 64:
39
+ raise ValueError('BasicBlock only supports groups=1 and base_width=64')
40
+ if dilation > 1:
41
+ raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
42
+ # Both self.conv1 and self.downsample layers downsample the input when stride != 1
43
+ self.conv1 = conv3x3(inplanes, planes, stride)
44
+ self.bn1 = norm_layer(planes)
45
+ self.relu = nn.ReLU(inplace=True)
46
+ self.conv2 = conv3x3(planes, planes)
47
+ self.bn2 = norm_layer(planes)
48
+ self.downsample = downsample
49
+ self.stride = stride
50
+
51
+ def forward(self, x):
52
+ identity = x
53
+
54
+ out = self.conv1(x)
55
+ out = self.bn1(out)
56
+ out = self.relu(out)
57
+
58
+ out = self.conv2(out)
59
+ out = self.bn2(out)
60
+
61
+ if self.downsample is not None:
62
+ identity = self.downsample(x)
63
+
64
+ out += identity
65
+ out = self.relu(out)
66
+
67
+ return out
68
+
69
+
70
+ class Bottleneck(nn.Module):
71
+ # Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
72
+ # while original implementation places the stride at the first 1x1 convolution(self.conv1)
73
+ # according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.
74
+ # This variant is also known as ResNet V1.5 and improves accuracy according to
75
+ # https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.
76
+
77
+ expansion = 4
78
+
79
+ def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
80
+ base_width=64, dilation=1, norm_layer=None):
81
+ super(Bottleneck, self).__init__()
82
+ if norm_layer is None:
83
+ norm_layer = nn.BatchNorm2d
84
+ width = int(planes * (base_width / 64.)) * groups
85
+ # Both self.conv2 and self.downsample layers downsample the input when stride != 1
86
+ self.conv1 = conv1x1(inplanes, width)
87
+ self.bn1 = norm_layer(width)
88
+ self.conv2 = conv3x3(width, width, stride, groups, dilation)
89
+ self.bn2 = norm_layer(width)
90
+ self.conv3 = conv1x1(width, planes * self.expansion)
91
+ self.bn3 = norm_layer(planes * self.expansion)
92
+ self.relu = nn.ReLU(inplace=True)
93
+ self.downsample = downsample
94
+ self.stride = stride
95
+
96
+ def forward(self, x):
97
+ identity = x
98
+
99
+ out = self.conv1(x)
100
+ out = self.bn1(out)
101
+ out = self.relu(out)
102
+
103
+ out = self.conv2(out)
104
+ out = self.bn2(out)
105
+ out = self.relu(out)
106
+
107
+ out = self.conv3(out)
108
+ out = self.bn3(out)
109
+
110
+ if self.downsample is not None:
111
+ identity = self.downsample(x)
112
+
113
+ out += identity
114
+ out = self.relu(out)
115
+
116
+ return out
117
+
118
+
119
+ class ResNet(nn.Module):
120
+
121
+ def __init__(self, block, layers, num_classes=1000, zero_init_residual=False,
122
+ groups=1, width_per_group=64, replace_stride_with_dilation=None,
123
+ norm_layer=None):
124
+ super(ResNet, self).__init__()
125
+ if norm_layer is None:
126
+ norm_layer = nn.BatchNorm2d
127
+ self._norm_layer = norm_layer
128
+
129
+ self.inplanes = 64
130
+ self.dilation = 1
131
+ if replace_stride_with_dilation is None:
132
+ # each element in the tuple indicates if we should replace
133
+ # the 2x2 stride with a dilated convolution instead
134
+ replace_stride_with_dilation = [False, False, False]
135
+ if len(replace_stride_with_dilation) != 3:
136
+ raise ValueError("replace_stride_with_dilation should be None "
137
+ "or a 3-element tuple, got {}".format(replace_stride_with_dilation))
138
+ self.groups = groups
139
+ self.base_width = width_per_group
140
+ self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3,
141
+ bias=False)
142
+ self.bn1 = norm_layer(self.inplanes)
143
+ self.relu = nn.ReLU(inplace=True)
144
+ self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
145
+ self.layer1 = self._make_layer(block, 64, layers[0])
146
+ self.layer2 = self._make_layer(block, 128, layers[1], stride=2,
147
+ dilate=replace_stride_with_dilation[0])
148
+ self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
149
+ dilate=replace_stride_with_dilation[1])
150
+ self.layer4 = self._make_layer(block, 512, layers[3], stride=2,
151
+ dilate=replace_stride_with_dilation[2])
152
+ #self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
153
+ #self.fc = nn.Linear(512 * block.expansion, num_classes)
154
+
155
+ for m in self.modules():
156
+ if isinstance(m, nn.Conv2d):
157
+ nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
158
+ elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
159
+ nn.init.constant_(m.weight, 1)
160
+ nn.init.constant_(m.bias, 0)
161
+
162
+ # Zero-initialize the last BN in each residual branch,
163
+ # so that the residual branch starts with zeros, and each residual block behaves like an identity.
164
+ # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
165
+ if zero_init_residual:
166
+ for m in self.modules():
167
+ if isinstance(m, Bottleneck):
168
+ nn.init.constant_(m.bn3.weight, 0)
169
+ elif isinstance(m, BasicBlock):
170
+ nn.init.constant_(m.bn2.weight, 0)
171
+
172
+ def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
173
+ norm_layer = self._norm_layer
174
+ downsample = None
175
+ previous_dilation = self.dilation
176
+ if dilate:
177
+ self.dilation *= stride
178
+ stride = 1
179
+ if stride != 1 or self.inplanes != planes * block.expansion:
180
+ downsample = nn.Sequential(
181
+ conv1x1(self.inplanes, planes * block.expansion, stride),
182
+ norm_layer(planes * block.expansion),
183
+ )
184
+
185
+ layers = []
186
+ layers.append(block(self.inplanes, planes, stride, downsample, self.groups,
187
+ self.base_width, previous_dilation, norm_layer))
188
+ self.inplanes = planes * block.expansion
189
+ for _ in range(1, blocks):
190
+ layers.append(block(self.inplanes, planes, groups=self.groups,
191
+ base_width=self.base_width, dilation=self.dilation,
192
+ norm_layer=norm_layer))
193
+
194
+ return nn.Sequential(*layers)
195
+
196
+ def _forward_impl(self, x):
197
+ # See note [TorchScript super()]
198
+ features = []
199
+ x = self.conv1(x)
200
+ x = self.bn1(x)
201
+ x = self.relu(x)
202
+ x = self.maxpool(x)
203
+
204
+ x = self.layer1(x)
205
+ features.append(x)
206
+
207
+ x = self.layer2(x)
208
+ features.append(x)
209
+
210
+ x = self.layer3(x)
211
+ features.append(x)
212
+
213
+ x = self.layer4(x)
214
+ features.append(x)
215
+
216
+ #x = self.avgpool(x)
217
+ #x = torch.flatten(x, 1)
218
+ #x = self.fc(x)
219
+
220
+ return features
221
+
222
+ def forward(self, x):
223
+ return self._forward_impl(x)
224
+
225
+
226
+
227
+ def resnext101_32x8d(pretrained=True, **kwargs):
228
+ """Constructs a ResNet-152 model.
229
+ Args:
230
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
231
+ """
232
+ kwargs['groups'] = 32
233
+ kwargs['width_per_group'] = 8
234
+
235
+ model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
236
+ return model
237
+
controlnet_aux/src/controlnet_aux/leres/leres/__init__.py ADDED
File without changes
controlnet_aux/src/controlnet_aux/leres/leres/depthmap.py ADDED
@@ -0,0 +1,548 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Author: thygate
2
+ # https://github.com/thygate/stable-diffusion-webui-depthmap-script
3
+
4
+ import gc
5
+ from operator import getitem
6
+
7
+ import cv2
8
+ import numpy as np
9
+ import skimage.measure
10
+ import torch
11
+ from torchvision.transforms import transforms
12
+
13
+ from ...util import torch_gc
14
+
15
+ whole_size_threshold = 1600 # R_max from the paper
16
+ pix2pixsize = 1024
17
+
18
+ def scale_torch(img):
19
+ """
20
+ Scale the image and output it in torch.tensor.
21
+ :param img: input rgb is in shape [H, W, C], input depth/disp is in shape [H, W]
22
+ :param scale: the scale factor. float
23
+ :return: img. [C, H, W]
24
+ """
25
+ if len(img.shape) == 2:
26
+ img = img[np.newaxis, :, :]
27
+ if img.shape[2] == 3:
28
+ transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406) , (0.229, 0.224, 0.225) )])
29
+ img = transform(img.astype(np.float32))
30
+ else:
31
+ img = img.astype(np.float32)
32
+ img = torch.from_numpy(img)
33
+ return img
34
+
35
+ def estimateleres(img, model, w, h):
36
+ device = next(iter(model.parameters())).device
37
+ # leres transform input
38
+ rgb_c = img[:, :, ::-1].copy()
39
+ A_resize = cv2.resize(rgb_c, (w, h))
40
+ img_torch = scale_torch(A_resize)[None, :, :, :]
41
+
42
+ # compute
43
+ with torch.no_grad():
44
+ img_torch = img_torch.to(device)
45
+ prediction = model.depth_model(img_torch)
46
+
47
+ prediction = prediction.squeeze().cpu().numpy()
48
+ prediction = cv2.resize(prediction, (img.shape[1], img.shape[0]), interpolation=cv2.INTER_CUBIC)
49
+
50
+ return prediction
51
+
52
+ def generatemask(size):
53
+ # Generates a Guassian mask
54
+ mask = np.zeros(size, dtype=np.float32)
55
+ sigma = int(size[0]/16)
56
+ k_size = int(2 * np.ceil(2 * int(size[0]/16)) + 1)
57
+ mask[int(0.15*size[0]):size[0] - int(0.15*size[0]), int(0.15*size[1]): size[1] - int(0.15*size[1])] = 1
58
+ mask = cv2.GaussianBlur(mask, (int(k_size), int(k_size)), sigma)
59
+ mask = (mask - mask.min()) / (mask.max() - mask.min())
60
+ mask = mask.astype(np.float32)
61
+ return mask
62
+
63
+ def resizewithpool(img, size):
64
+ i_size = img.shape[0]
65
+ n = int(np.floor(i_size/size))
66
+
67
+ out = skimage.measure.block_reduce(img, (n, n), np.max)
68
+ return out
69
+
70
+ def rgb2gray(rgb):
71
+ # Converts rgb to gray
72
+ return np.dot(rgb[..., :3], [0.2989, 0.5870, 0.1140])
73
+
74
+ def calculateprocessingres(img, basesize, confidence=0.1, scale_threshold=3, whole_size_threshold=3000):
75
+ # Returns the R_x resolution described in section 5 of the main paper.
76
+
77
+ # Parameters:
78
+ # img :input rgb image
79
+ # basesize : size the dilation kernel which is equal to receptive field of the network.
80
+ # confidence: value of x in R_x; allowed percentage of pixels that are not getting any contextual cue.
81
+ # scale_threshold: maximum allowed upscaling on the input image ; it has been set to 3.
82
+ # whole_size_threshold: maximum allowed resolution. (R_max from section 6 of the main paper)
83
+
84
+ # Returns:
85
+ # outputsize_scale*speed_scale :The computed R_x resolution
86
+ # patch_scale: K parameter from section 6 of the paper
87
+
88
+ # speed scale parameter is to process every image in a smaller size to accelerate the R_x resolution search
89
+ speed_scale = 32
90
+ image_dim = int(min(img.shape[0:2]))
91
+
92
+ gray = rgb2gray(img)
93
+ grad = np.abs(cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=3)) + np.abs(cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=3))
94
+ grad = cv2.resize(grad, (image_dim, image_dim), cv2.INTER_AREA)
95
+
96
+ # thresholding the gradient map to generate the edge-map as a proxy of the contextual cues
97
+ m = grad.min()
98
+ M = grad.max()
99
+ middle = m + (0.4 * (M - m))
100
+ grad[grad < middle] = 0
101
+ grad[grad >= middle] = 1
102
+
103
+ # dilation kernel with size of the receptive field
104
+ kernel = np.ones((int(basesize/speed_scale), int(basesize/speed_scale)), float)
105
+ # dilation kernel with size of the a quarter of receptive field used to compute k
106
+ # as described in section 6 of main paper
107
+ kernel2 = np.ones((int(basesize / (4*speed_scale)), int(basesize / (4*speed_scale))), float)
108
+
109
+ # Output resolution limit set by the whole_size_threshold and scale_threshold.
110
+ threshold = min(whole_size_threshold, scale_threshold * max(img.shape[:2]))
111
+
112
+ outputsize_scale = basesize / speed_scale
113
+ for p_size in range(int(basesize/speed_scale), int(threshold/speed_scale), int(basesize / (2*speed_scale))):
114
+ grad_resized = resizewithpool(grad, p_size)
115
+ grad_resized = cv2.resize(grad_resized, (p_size, p_size), cv2.INTER_NEAREST)
116
+ grad_resized[grad_resized >= 0.5] = 1
117
+ grad_resized[grad_resized < 0.5] = 0
118
+
119
+ dilated = cv2.dilate(grad_resized, kernel, iterations=1)
120
+ meanvalue = (1-dilated).mean()
121
+ if meanvalue > confidence:
122
+ break
123
+ else:
124
+ outputsize_scale = p_size
125
+
126
+ grad_region = cv2.dilate(grad_resized, kernel2, iterations=1)
127
+ patch_scale = grad_region.mean()
128
+
129
+ return int(outputsize_scale*speed_scale), patch_scale
130
+
131
+ # Generate a double-input depth estimation
132
+ def doubleestimate(img, size1, size2, pix2pixsize, model, net_type, pix2pixmodel):
133
+ # Generate the low resolution estimation
134
+ estimate1 = singleestimate(img, size1, model, net_type)
135
+ # Resize to the inference size of merge network.
136
+ estimate1 = cv2.resize(estimate1, (pix2pixsize, pix2pixsize), interpolation=cv2.INTER_CUBIC)
137
+
138
+ # Generate the high resolution estimation
139
+ estimate2 = singleestimate(img, size2, model, net_type)
140
+ # Resize to the inference size of merge network.
141
+ estimate2 = cv2.resize(estimate2, (pix2pixsize, pix2pixsize), interpolation=cv2.INTER_CUBIC)
142
+
143
+ # Inference on the merge model
144
+ pix2pixmodel.set_input(estimate1, estimate2)
145
+ pix2pixmodel.test()
146
+ visuals = pix2pixmodel.get_current_visuals()
147
+ prediction_mapped = visuals['fake_B']
148
+ prediction_mapped = (prediction_mapped+1)/2
149
+ prediction_mapped = (prediction_mapped - torch.min(prediction_mapped)) / (
150
+ torch.max(prediction_mapped) - torch.min(prediction_mapped))
151
+ prediction_mapped = prediction_mapped.squeeze().cpu().numpy()
152
+
153
+ return prediction_mapped
154
+
155
+ # Generate a single-input depth estimation
156
+ def singleestimate(img, msize, model, net_type):
157
+ # if net_type == 0:
158
+ return estimateleres(img, model, msize, msize)
159
+ # else:
160
+ # return estimatemidasBoost(img, model, msize, msize)
161
+
162
+ def applyGridpatch(blsize, stride, img, box):
163
+ # Extract a simple grid patch.
164
+ counter1 = 0
165
+ patch_bound_list = {}
166
+ for k in range(blsize, img.shape[1] - blsize, stride):
167
+ for j in range(blsize, img.shape[0] - blsize, stride):
168
+ patch_bound_list[str(counter1)] = {}
169
+ patchbounds = [j - blsize, k - blsize, j - blsize + 2 * blsize, k - blsize + 2 * blsize]
170
+ patch_bound = [box[0] + patchbounds[1], box[1] + patchbounds[0], patchbounds[3] - patchbounds[1],
171
+ patchbounds[2] - patchbounds[0]]
172
+ patch_bound_list[str(counter1)]['rect'] = patch_bound
173
+ patch_bound_list[str(counter1)]['size'] = patch_bound[2]
174
+ counter1 = counter1 + 1
175
+ return patch_bound_list
176
+
177
+ # Generating local patches to perform the local refinement described in section 6 of the main paper.
178
+ def generatepatchs(img, base_size):
179
+
180
+ # Compute the gradients as a proxy of the contextual cues.
181
+ img_gray = rgb2gray(img)
182
+ whole_grad = np.abs(cv2.Sobel(img_gray, cv2.CV_64F, 0, 1, ksize=3)) +\
183
+ np.abs(cv2.Sobel(img_gray, cv2.CV_64F, 1, 0, ksize=3))
184
+
185
+ threshold = whole_grad[whole_grad > 0].mean()
186
+ whole_grad[whole_grad < threshold] = 0
187
+
188
+ # We use the integral image to speed-up the evaluation of the amount of gradients for each patch.
189
+ gf = whole_grad.sum()/len(whole_grad.reshape(-1))
190
+ grad_integral_image = cv2.integral(whole_grad)
191
+
192
+ # Variables are selected such that the initial patch size would be the receptive field size
193
+ # and the stride is set to 1/3 of the receptive field size.
194
+ blsize = int(round(base_size/2))
195
+ stride = int(round(blsize*0.75))
196
+
197
+ # Get initial Grid
198
+ patch_bound_list = applyGridpatch(blsize, stride, img, [0, 0, 0, 0])
199
+
200
+ # Refine initial Grid of patches by discarding the flat (in terms of gradients of the rgb image) ones. Refine
201
+ # each patch size to ensure that there will be enough depth cues for the network to generate a consistent depth map.
202
+ print("Selecting patches ...")
203
+ patch_bound_list = adaptiveselection(grad_integral_image, patch_bound_list, gf)
204
+
205
+ # Sort the patch list to make sure the merging operation will be done with the correct order: starting from biggest
206
+ # patch
207
+ patchset = sorted(patch_bound_list.items(), key=lambda x: getitem(x[1], 'size'), reverse=True)
208
+ return patchset
209
+
210
+ def getGF_fromintegral(integralimage, rect):
211
+ # Computes the gradient density of a given patch from the gradient integral image.
212
+ x1 = rect[1]
213
+ x2 = rect[1]+rect[3]
214
+ y1 = rect[0]
215
+ y2 = rect[0]+rect[2]
216
+ value = integralimage[x2, y2]-integralimage[x1, y2]-integralimage[x2, y1]+integralimage[x1, y1]
217
+ return value
218
+
219
+ # Adaptively select patches
220
+ def adaptiveselection(integral_grad, patch_bound_list, gf):
221
+ patchlist = {}
222
+ count = 0
223
+ height, width = integral_grad.shape
224
+
225
+ search_step = int(32/factor)
226
+
227
+ # Go through all patches
228
+ for c in range(len(patch_bound_list)):
229
+ # Get patch
230
+ bbox = patch_bound_list[str(c)]['rect']
231
+
232
+ # Compute the amount of gradients present in the patch from the integral image.
233
+ cgf = getGF_fromintegral(integral_grad, bbox)/(bbox[2]*bbox[3])
234
+
235
+ # Check if patching is beneficial by comparing the gradient density of the patch to
236
+ # the gradient density of the whole image
237
+ if cgf >= gf:
238
+ bbox_test = bbox.copy()
239
+ patchlist[str(count)] = {}
240
+
241
+ # Enlarge each patch until the gradient density of the patch is equal
242
+ # to the whole image gradient density
243
+ while True:
244
+
245
+ bbox_test[0] = bbox_test[0] - int(search_step/2)
246
+ bbox_test[1] = bbox_test[1] - int(search_step/2)
247
+
248
+ bbox_test[2] = bbox_test[2] + search_step
249
+ bbox_test[3] = bbox_test[3] + search_step
250
+
251
+ # Check if we are still within the image
252
+ if bbox_test[0] < 0 or bbox_test[1] < 0 or bbox_test[1] + bbox_test[3] >= height \
253
+ or bbox_test[0] + bbox_test[2] >= width:
254
+ break
255
+
256
+ # Compare gradient density
257
+ cgf = getGF_fromintegral(integral_grad, bbox_test)/(bbox_test[2]*bbox_test[3])
258
+ if cgf < gf:
259
+ break
260
+ bbox = bbox_test.copy()
261
+
262
+ # Add patch to selected patches
263
+ patchlist[str(count)]['rect'] = bbox
264
+ patchlist[str(count)]['size'] = bbox[2]
265
+ count = count + 1
266
+
267
+ # Return selected patches
268
+ return patchlist
269
+
270
+ def impatch(image, rect):
271
+ # Extract the given patch pixels from a given image.
272
+ w1 = rect[0]
273
+ h1 = rect[1]
274
+ w2 = w1 + rect[2]
275
+ h2 = h1 + rect[3]
276
+ image_patch = image[h1:h2, w1:w2]
277
+ return image_patch
278
+
279
+ class ImageandPatchs:
280
+ def __init__(self, root_dir, name, patchsinfo, rgb_image, scale=1):
281
+ self.root_dir = root_dir
282
+ self.patchsinfo = patchsinfo
283
+ self.name = name
284
+ self.patchs = patchsinfo
285
+ self.scale = scale
286
+
287
+ self.rgb_image = cv2.resize(rgb_image, (round(rgb_image.shape[1]*scale), round(rgb_image.shape[0]*scale)),
288
+ interpolation=cv2.INTER_CUBIC)
289
+
290
+ self.do_have_estimate = False
291
+ self.estimation_updated_image = None
292
+ self.estimation_base_image = None
293
+
294
+ def __len__(self):
295
+ return len(self.patchs)
296
+
297
+ def set_base_estimate(self, est):
298
+ self.estimation_base_image = est
299
+ if self.estimation_updated_image is not None:
300
+ self.do_have_estimate = True
301
+
302
+ def set_updated_estimate(self, est):
303
+ self.estimation_updated_image = est
304
+ if self.estimation_base_image is not None:
305
+ self.do_have_estimate = True
306
+
307
+ def __getitem__(self, index):
308
+ patch_id = int(self.patchs[index][0])
309
+ rect = np.array(self.patchs[index][1]['rect'])
310
+ msize = self.patchs[index][1]['size']
311
+
312
+ ## applying scale to rect:
313
+ rect = np.round(rect * self.scale)
314
+ rect = rect.astype('int')
315
+ msize = round(msize * self.scale)
316
+
317
+ patch_rgb = impatch(self.rgb_image, rect)
318
+ if self.do_have_estimate:
319
+ patch_whole_estimate_base = impatch(self.estimation_base_image, rect)
320
+ patch_whole_estimate_updated = impatch(self.estimation_updated_image, rect)
321
+ return {'patch_rgb': patch_rgb, 'patch_whole_estimate_base': patch_whole_estimate_base,
322
+ 'patch_whole_estimate_updated': patch_whole_estimate_updated, 'rect': rect,
323
+ 'size': msize, 'id': patch_id}
324
+ else:
325
+ return {'patch_rgb': patch_rgb, 'rect': rect, 'size': msize, 'id': patch_id}
326
+
327
+ def print_options(self, opt):
328
+ """Print and save options
329
+
330
+ It will print both current options and default values(if different).
331
+ It will save options into a text file / [checkpoints_dir] / opt.txt
332
+ """
333
+ message = ''
334
+ message += '----------------- Options ---------------\n'
335
+ for k, v in sorted(vars(opt).items()):
336
+ comment = ''
337
+ default = self.parser.get_default(k)
338
+ if v != default:
339
+ comment = '\t[default: %s]' % str(default)
340
+ message += '{:>25}: {:<30}{}\n'.format(str(k), str(v), comment)
341
+ message += '----------------- End -------------------'
342
+ print(message)
343
+
344
+ # save to the disk
345
+ """
346
+ expr_dir = os.path.join(opt.checkpoints_dir, opt.name)
347
+ util.mkdirs(expr_dir)
348
+ file_name = os.path.join(expr_dir, '{}_opt.txt'.format(opt.phase))
349
+ with open(file_name, 'wt') as opt_file:
350
+ opt_file.write(message)
351
+ opt_file.write('\n')
352
+ """
353
+
354
+ def parse(self):
355
+ """Parse our options, create checkpoints directory suffix, and set up gpu device."""
356
+ opt = self.gather_options()
357
+ opt.isTrain = self.isTrain # train or test
358
+
359
+ # process opt.suffix
360
+ if opt.suffix:
361
+ suffix = ('_' + opt.suffix.format(**vars(opt))) if opt.suffix != '' else ''
362
+ opt.name = opt.name + suffix
363
+
364
+ #self.print_options(opt)
365
+
366
+ # set gpu ids
367
+ str_ids = opt.gpu_ids.split(',')
368
+ opt.gpu_ids = []
369
+ for str_id in str_ids:
370
+ id = int(str_id)
371
+ if id >= 0:
372
+ opt.gpu_ids.append(id)
373
+ #if len(opt.gpu_ids) > 0:
374
+ # torch.cuda.set_device(opt.gpu_ids[0])
375
+
376
+ self.opt = opt
377
+ return self.opt
378
+
379
+
380
+ def estimateboost(img, model, model_type, pix2pixmodel, max_res=512, depthmap_script_boost_rmax=None):
381
+ global whole_size_threshold
382
+
383
+ # get settings
384
+ if depthmap_script_boost_rmax:
385
+ whole_size_threshold = depthmap_script_boost_rmax
386
+
387
+ if model_type == 0: #leres
388
+ net_receptive_field_size = 448
389
+ patch_netsize = 2 * net_receptive_field_size
390
+ elif model_type == 1: #dpt_beit_large_512
391
+ net_receptive_field_size = 512
392
+ patch_netsize = 2 * net_receptive_field_size
393
+ else: #other midas
394
+ net_receptive_field_size = 384
395
+ patch_netsize = 2 * net_receptive_field_size
396
+
397
+ gc.collect()
398
+ torch_gc()
399
+
400
+ # Generate mask used to smoothly blend the local pathc estimations to the base estimate.
401
+ # It is arbitrarily large to avoid artifacts during rescaling for each crop.
402
+ mask_org = generatemask((3000, 3000))
403
+ mask = mask_org.copy()
404
+
405
+ # Value x of R_x defined in the section 5 of the main paper.
406
+ r_threshold_value = 0.2
407
+ #if R0:
408
+ # r_threshold_value = 0
409
+
410
+ input_resolution = img.shape
411
+ scale_threshold = 3 # Allows up-scaling with a scale up to 3
412
+
413
+ # Find the best input resolution R-x. The resolution search described in section 5-double estimation of the main paper and section B of the
414
+ # supplementary material.
415
+ whole_image_optimal_size, patch_scale = calculateprocessingres(img, net_receptive_field_size, r_threshold_value, scale_threshold, whole_size_threshold)
416
+
417
+ # print('wholeImage being processed in :', whole_image_optimal_size)
418
+
419
+ # Generate the base estimate using the double estimation.
420
+ whole_estimate = doubleestimate(img, net_receptive_field_size, whole_image_optimal_size, pix2pixsize, model, model_type, pix2pixmodel)
421
+
422
+ # Compute the multiplier described in section 6 of the main paper to make sure our initial patch can select
423
+ # small high-density regions of the image.
424
+ global factor
425
+ factor = max(min(1, 4 * patch_scale * whole_image_optimal_size / whole_size_threshold), 0.2)
426
+ # print('Adjust factor is:', 1/factor)
427
+
428
+ # Check if Local boosting is beneficial.
429
+ if max_res < whole_image_optimal_size:
430
+ # print("No Local boosting. Specified Max Res is smaller than R20, Returning doubleestimate result")
431
+ return cv2.resize(whole_estimate, (input_resolution[1], input_resolution[0]), interpolation=cv2.INTER_CUBIC)
432
+
433
+ # Compute the default target resolution.
434
+ if img.shape[0] > img.shape[1]:
435
+ a = 2 * whole_image_optimal_size
436
+ b = round(2 * whole_image_optimal_size * img.shape[1] / img.shape[0])
437
+ else:
438
+ a = round(2 * whole_image_optimal_size * img.shape[0] / img.shape[1])
439
+ b = 2 * whole_image_optimal_size
440
+ b = int(round(b / factor))
441
+ a = int(round(a / factor))
442
+
443
+ """
444
+ # recompute a, b and saturate to max res.
445
+ if max(a,b) > max_res:
446
+ print('Default Res is higher than max-res: Reducing final resolution')
447
+ if img.shape[0] > img.shape[1]:
448
+ a = max_res
449
+ b = round(max_res * img.shape[1] / img.shape[0])
450
+ else:
451
+ a = round(max_res * img.shape[0] / img.shape[1])
452
+ b = max_res
453
+ b = int(b)
454
+ a = int(a)
455
+ """
456
+
457
+ img = cv2.resize(img, (b, a), interpolation=cv2.INTER_CUBIC)
458
+
459
+ # Extract selected patches for local refinement
460
+ base_size = net_receptive_field_size * 2
461
+ patchset = generatepatchs(img, base_size)
462
+
463
+ # print('Target resolution: ', img.shape)
464
+
465
+ # Computing a scale in case user prompted to generate the results as the same resolution of the input.
466
+ # Notice that our method output resolution is independent of the input resolution and this parameter will only
467
+ # enable a scaling operation during the local patch merge implementation to generate results with the same resolution
468
+ # as the input.
469
+ """
470
+ if output_resolution == 1:
471
+ mergein_scale = input_resolution[0] / img.shape[0]
472
+ print('Dynamicly change merged-in resolution; scale:', mergein_scale)
473
+ else:
474
+ mergein_scale = 1
475
+ """
476
+ # always rescale to input res for now
477
+ mergein_scale = input_resolution[0] / img.shape[0]
478
+
479
+ imageandpatchs = ImageandPatchs('', '', patchset, img, mergein_scale)
480
+ whole_estimate_resized = cv2.resize(whole_estimate, (round(img.shape[1]*mergein_scale),
481
+ round(img.shape[0]*mergein_scale)), interpolation=cv2.INTER_CUBIC)
482
+ imageandpatchs.set_base_estimate(whole_estimate_resized.copy())
483
+ imageandpatchs.set_updated_estimate(whole_estimate_resized.copy())
484
+
485
+ print('Resulting depthmap resolution will be :', whole_estimate_resized.shape[:2])
486
+ print('Patches to process: '+str(len(imageandpatchs)))
487
+
488
+ # Enumerate through all patches, generate their estimations and refining the base estimate.
489
+ for patch_ind in range(len(imageandpatchs)):
490
+
491
+ # Get patch information
492
+ patch = imageandpatchs[patch_ind] # patch object
493
+ patch_rgb = patch['patch_rgb'] # rgb patch
494
+ patch_whole_estimate_base = patch['patch_whole_estimate_base'] # corresponding patch from base
495
+ rect = patch['rect'] # patch size and location
496
+ patch_id = patch['id'] # patch ID
497
+ org_size = patch_whole_estimate_base.shape # the original size from the unscaled input
498
+ print('\t Processing patch', patch_ind, '/', len(imageandpatchs)-1, '|', rect)
499
+
500
+ # We apply double estimation for patches. The high resolution value is fixed to twice the receptive
501
+ # field size of the network for patches to accelerate the process.
502
+ patch_estimation = doubleestimate(patch_rgb, net_receptive_field_size, patch_netsize, pix2pixsize, model, model_type, pix2pixmodel)
503
+ patch_estimation = cv2.resize(patch_estimation, (pix2pixsize, pix2pixsize), interpolation=cv2.INTER_CUBIC)
504
+ patch_whole_estimate_base = cv2.resize(patch_whole_estimate_base, (pix2pixsize, pix2pixsize), interpolation=cv2.INTER_CUBIC)
505
+
506
+ # Merging the patch estimation into the base estimate using our merge network:
507
+ # We feed the patch estimation and the same region from the updated base estimate to the merge network
508
+ # to generate the target estimate for the corresponding region.
509
+ pix2pixmodel.set_input(patch_whole_estimate_base, patch_estimation)
510
+
511
+ # Run merging network
512
+ pix2pixmodel.test()
513
+ visuals = pix2pixmodel.get_current_visuals()
514
+
515
+ prediction_mapped = visuals['fake_B']
516
+ prediction_mapped = (prediction_mapped+1)/2
517
+ prediction_mapped = prediction_mapped.squeeze().cpu().numpy()
518
+
519
+ mapped = prediction_mapped
520
+
521
+ # We use a simple linear polynomial to make sure the result of the merge network would match the values of
522
+ # base estimate
523
+ p_coef = np.polyfit(mapped.reshape(-1), patch_whole_estimate_base.reshape(-1), deg=1)
524
+ merged = np.polyval(p_coef, mapped.reshape(-1)).reshape(mapped.shape)
525
+
526
+ merged = cv2.resize(merged, (org_size[1],org_size[0]), interpolation=cv2.INTER_CUBIC)
527
+
528
+ # Get patch size and location
529
+ w1 = rect[0]
530
+ h1 = rect[1]
531
+ w2 = w1 + rect[2]
532
+ h2 = h1 + rect[3]
533
+
534
+ # To speed up the implementation, we only generate the Gaussian mask once with a sufficiently large size
535
+ # and resize it to our needed size while merging the patches.
536
+ if mask.shape != org_size:
537
+ mask = cv2.resize(mask_org, (org_size[1],org_size[0]), interpolation=cv2.INTER_LINEAR)
538
+
539
+ tobemergedto = imageandpatchs.estimation_updated_image
540
+
541
+ # Update the whole estimation:
542
+ # We use a simple Gaussian mask to blend the merged patch region with the base estimate to ensure seamless
543
+ # blending at the boundaries of the patch region.
544
+ tobemergedto[h1:h2, w1:w2] = np.multiply(tobemergedto[h1:h2, w1:w2], 1 - mask) + np.multiply(merged, mask)
545
+ imageandpatchs.set_updated_estimate(tobemergedto)
546
+
547
+ # output
548
+ return cv2.resize(imageandpatchs.estimation_updated_image, (input_resolution[1], input_resolution[0]), interpolation=cv2.INTER_CUBIC)
controlnet_aux/src/controlnet_aux/leres/leres/multi_depth_model_woauxi.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+
4
+ from . import network_auxi as network
5
+ from .net_tools import get_func
6
+
7
+
8
+ class RelDepthModel(nn.Module):
9
+ def __init__(self, backbone='resnet50'):
10
+ super(RelDepthModel, self).__init__()
11
+ if backbone == 'resnet50':
12
+ encoder = 'resnet50_stride32'
13
+ elif backbone == 'resnext101':
14
+ encoder = 'resnext101_stride32x8d'
15
+ self.depth_model = DepthModel(encoder)
16
+
17
+ def inference(self, rgb):
18
+ with torch.no_grad():
19
+ input = rgb.to(self.depth_model.device)
20
+ depth = self.depth_model(input)
21
+ #pred_depth_out = depth - depth.min() + 0.01
22
+ return depth #pred_depth_out
23
+
24
+
25
+ class DepthModel(nn.Module):
26
+ def __init__(self, encoder):
27
+ super(DepthModel, self).__init__()
28
+ backbone = network.__name__.split('.')[-1] + '.' + encoder
29
+ self.encoder_modules = get_func(backbone)()
30
+ self.decoder_modules = network.Decoder()
31
+
32
+ def forward(self, x):
33
+ lateral_out = self.encoder_modules(x)
34
+ out_logit = self.decoder_modules(lateral_out)
35
+ return out_logit
controlnet_aux/src/controlnet_aux/leres/leres/net_tools.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import importlib
2
+ import torch
3
+ import os
4
+ from collections import OrderedDict
5
+
6
+
7
+ def get_func(func_name):
8
+ """Helper to return a function object by name. func_name must identify a
9
+ function in this module or the path to a function relative to the base
10
+ 'modeling' module.
11
+ """
12
+ if func_name == '':
13
+ return None
14
+ try:
15
+ parts = func_name.split('.')
16
+ # Refers to a function in this module
17
+ if len(parts) == 1:
18
+ return globals()[parts[0]]
19
+ # Otherwise, assume we're referencing a module under modeling
20
+ module_name = 'controlnet_aux.leres.leres.' + '.'.join(parts[:-1])
21
+ module = importlib.import_module(module_name)
22
+ return getattr(module, parts[-1])
23
+ except Exception:
24
+ print('Failed to f1ind function: %s', func_name)
25
+ raise
26
+
27
+ def load_ckpt(args, depth_model, shift_model, focal_model):
28
+ """
29
+ Load checkpoint.
30
+ """
31
+ if os.path.isfile(args.load_ckpt):
32
+ print("loading checkpoint %s" % args.load_ckpt)
33
+ checkpoint = torch.load(args.load_ckpt)
34
+ if shift_model is not None:
35
+ shift_model.load_state_dict(strip_prefix_if_present(checkpoint['shift_model'], 'module.'),
36
+ strict=True)
37
+ if focal_model is not None:
38
+ focal_model.load_state_dict(strip_prefix_if_present(checkpoint['focal_model'], 'module.'),
39
+ strict=True)
40
+ depth_model.load_state_dict(strip_prefix_if_present(checkpoint['depth_model'], "module."),
41
+ strict=True)
42
+ del checkpoint
43
+ if torch.cuda.is_available():
44
+ torch.cuda.empty_cache()
45
+
46
+
47
+ def strip_prefix_if_present(state_dict, prefix):
48
+ keys = sorted(state_dict.keys())
49
+ if not all(key.startswith(prefix) for key in keys):
50
+ return state_dict
51
+ stripped_state_dict = OrderedDict()
52
+ for key, value in state_dict.items():
53
+ stripped_state_dict[key.replace(prefix, "")] = value
54
+ return stripped_state_dict
controlnet_aux/src/controlnet_aux/leres/leres/network_auxi.py ADDED
@@ -0,0 +1,417 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.init as init
4
+
5
+ from . import Resnet, Resnext_torch
6
+
7
+
8
+ def resnet50_stride32():
9
+ return DepthNet(backbone='resnet', depth=50, upfactors=[2, 2, 2, 2])
10
+
11
+ def resnext101_stride32x8d():
12
+ return DepthNet(backbone='resnext101_32x8d', depth=101, upfactors=[2, 2, 2, 2])
13
+
14
+
15
+ class Decoder(nn.Module):
16
+ def __init__(self):
17
+ super(Decoder, self).__init__()
18
+ self.inchannels = [256, 512, 1024, 2048]
19
+ self.midchannels = [256, 256, 256, 512]
20
+ self.upfactors = [2,2,2,2]
21
+ self.outchannels = 1
22
+
23
+ self.conv = FTB(inchannels=self.inchannels[3], midchannels=self.midchannels[3])
24
+ self.conv1 = nn.Conv2d(in_channels=self.midchannels[3], out_channels=self.midchannels[2], kernel_size=3, padding=1, stride=1, bias=True)
25
+ self.upsample = nn.Upsample(scale_factor=self.upfactors[3], mode='bilinear', align_corners=True)
26
+
27
+ self.ffm2 = FFM(inchannels=self.inchannels[2], midchannels=self.midchannels[2], outchannels = self.midchannels[2], upfactor=self.upfactors[2])
28
+ self.ffm1 = FFM(inchannels=self.inchannels[1], midchannels=self.midchannels[1], outchannels = self.midchannels[1], upfactor=self.upfactors[1])
29
+ self.ffm0 = FFM(inchannels=self.inchannels[0], midchannels=self.midchannels[0], outchannels = self.midchannels[0], upfactor=self.upfactors[0])
30
+
31
+ self.outconv = AO(inchannels=self.midchannels[0], outchannels=self.outchannels, upfactor=2)
32
+ self._init_params()
33
+
34
+ def _init_params(self):
35
+ for m in self.modules():
36
+ if isinstance(m, nn.Conv2d):
37
+ init.normal_(m.weight, std=0.01)
38
+ if m.bias is not None:
39
+ init.constant_(m.bias, 0)
40
+ elif isinstance(m, nn.ConvTranspose2d):
41
+ init.normal_(m.weight, std=0.01)
42
+ if m.bias is not None:
43
+ init.constant_(m.bias, 0)
44
+ elif isinstance(m, nn.BatchNorm2d): #NN.BatchNorm2d
45
+ init.constant_(m.weight, 1)
46
+ init.constant_(m.bias, 0)
47
+ elif isinstance(m, nn.Linear):
48
+ init.normal_(m.weight, std=0.01)
49
+ if m.bias is not None:
50
+ init.constant_(m.bias, 0)
51
+
52
+ def forward(self, features):
53
+ x_32x = self.conv(features[3]) # 1/32
54
+ x_32 = self.conv1(x_32x)
55
+ x_16 = self.upsample(x_32) # 1/16
56
+
57
+ x_8 = self.ffm2(features[2], x_16) # 1/8
58
+ x_4 = self.ffm1(features[1], x_8) # 1/4
59
+ x_2 = self.ffm0(features[0], x_4) # 1/2
60
+ #-----------------------------------------
61
+ x = self.outconv(x_2) # original size
62
+ return x
63
+
64
+ class DepthNet(nn.Module):
65
+ __factory = {
66
+ 18: Resnet.resnet18,
67
+ 34: Resnet.resnet34,
68
+ 50: Resnet.resnet50,
69
+ 101: Resnet.resnet101,
70
+ 152: Resnet.resnet152
71
+ }
72
+ def __init__(self,
73
+ backbone='resnet',
74
+ depth=50,
75
+ upfactors=[2, 2, 2, 2]):
76
+ super(DepthNet, self).__init__()
77
+ self.backbone = backbone
78
+ self.depth = depth
79
+ self.pretrained = False
80
+ self.inchannels = [256, 512, 1024, 2048]
81
+ self.midchannels = [256, 256, 256, 512]
82
+ self.upfactors = upfactors
83
+ self.outchannels = 1
84
+
85
+ # Build model
86
+ if self.backbone == 'resnet':
87
+ if self.depth not in DepthNet.__factory:
88
+ raise KeyError("Unsupported depth:", self.depth)
89
+ self.encoder = DepthNet.__factory[depth](pretrained=self.pretrained)
90
+ elif self.backbone == 'resnext101_32x8d':
91
+ self.encoder = Resnext_torch.resnext101_32x8d(pretrained=self.pretrained)
92
+ else:
93
+ self.encoder = Resnext_torch.resnext101(pretrained=self.pretrained)
94
+
95
+ def forward(self, x):
96
+ x = self.encoder(x) # 1/32, 1/16, 1/8, 1/4
97
+ return x
98
+
99
+
100
+ class FTB(nn.Module):
101
+ def __init__(self, inchannels, midchannels=512):
102
+ super(FTB, self).__init__()
103
+ self.in1 = inchannels
104
+ self.mid = midchannels
105
+ self.conv1 = nn.Conv2d(in_channels=self.in1, out_channels=self.mid, kernel_size=3, padding=1, stride=1,
106
+ bias=True)
107
+ # NN.BatchNorm2d
108
+ self.conv_branch = nn.Sequential(nn.ReLU(inplace=True), \
109
+ nn.Conv2d(in_channels=self.mid, out_channels=self.mid, kernel_size=3,
110
+ padding=1, stride=1, bias=True), \
111
+ nn.BatchNorm2d(num_features=self.mid), \
112
+ nn.ReLU(inplace=True), \
113
+ nn.Conv2d(in_channels=self.mid, out_channels=self.mid, kernel_size=3,
114
+ padding=1, stride=1, bias=True))
115
+ self.relu = nn.ReLU(inplace=True)
116
+
117
+ self.init_params()
118
+
119
+ def forward(self, x):
120
+ x = self.conv1(x)
121
+ x = x + self.conv_branch(x)
122
+ x = self.relu(x)
123
+
124
+ return x
125
+
126
+ def init_params(self):
127
+ for m in self.modules():
128
+ if isinstance(m, nn.Conv2d):
129
+ init.normal_(m.weight, std=0.01)
130
+ if m.bias is not None:
131
+ init.constant_(m.bias, 0)
132
+ elif isinstance(m, nn.ConvTranspose2d):
133
+ # init.kaiming_normal_(m.weight, mode='fan_out')
134
+ init.normal_(m.weight, std=0.01)
135
+ # init.xavier_normal_(m.weight)
136
+ if m.bias is not None:
137
+ init.constant_(m.bias, 0)
138
+ elif isinstance(m, nn.BatchNorm2d): # NN.BatchNorm2d
139
+ init.constant_(m.weight, 1)
140
+ init.constant_(m.bias, 0)
141
+ elif isinstance(m, nn.Linear):
142
+ init.normal_(m.weight, std=0.01)
143
+ if m.bias is not None:
144
+ init.constant_(m.bias, 0)
145
+
146
+
147
+ class ATA(nn.Module):
148
+ def __init__(self, inchannels, reduction=8):
149
+ super(ATA, self).__init__()
150
+ self.inchannels = inchannels
151
+ self.avg_pool = nn.AdaptiveAvgPool2d(1)
152
+ self.fc = nn.Sequential(nn.Linear(self.inchannels * 2, self.inchannels // reduction),
153
+ nn.ReLU(inplace=True),
154
+ nn.Linear(self.inchannels // reduction, self.inchannels),
155
+ nn.Sigmoid())
156
+ self.init_params()
157
+
158
+ def forward(self, low_x, high_x):
159
+ n, c, _, _ = low_x.size()
160
+ x = torch.cat([low_x, high_x], 1)
161
+ x = self.avg_pool(x)
162
+ x = x.view(n, -1)
163
+ x = self.fc(x).view(n, c, 1, 1)
164
+ x = low_x * x + high_x
165
+
166
+ return x
167
+
168
+ def init_params(self):
169
+ for m in self.modules():
170
+ if isinstance(m, nn.Conv2d):
171
+ # init.kaiming_normal_(m.weight, mode='fan_out')
172
+ # init.normal(m.weight, std=0.01)
173
+ init.xavier_normal_(m.weight)
174
+ if m.bias is not None:
175
+ init.constant_(m.bias, 0)
176
+ elif isinstance(m, nn.ConvTranspose2d):
177
+ # init.kaiming_normal_(m.weight, mode='fan_out')
178
+ # init.normal_(m.weight, std=0.01)
179
+ init.xavier_normal_(m.weight)
180
+ if m.bias is not None:
181
+ init.constant_(m.bias, 0)
182
+ elif isinstance(m, nn.BatchNorm2d): # NN.BatchNorm2d
183
+ init.constant_(m.weight, 1)
184
+ init.constant_(m.bias, 0)
185
+ elif isinstance(m, nn.Linear):
186
+ init.normal_(m.weight, std=0.01)
187
+ if m.bias is not None:
188
+ init.constant_(m.bias, 0)
189
+
190
+
191
+ class FFM(nn.Module):
192
+ def __init__(self, inchannels, midchannels, outchannels, upfactor=2):
193
+ super(FFM, self).__init__()
194
+ self.inchannels = inchannels
195
+ self.midchannels = midchannels
196
+ self.outchannels = outchannels
197
+ self.upfactor = upfactor
198
+
199
+ self.ftb1 = FTB(inchannels=self.inchannels, midchannels=self.midchannels)
200
+ # self.ata = ATA(inchannels = self.midchannels)
201
+ self.ftb2 = FTB(inchannels=self.midchannels, midchannels=self.outchannels)
202
+
203
+ self.upsample = nn.Upsample(scale_factor=self.upfactor, mode='bilinear', align_corners=True)
204
+
205
+ self.init_params()
206
+
207
+ def forward(self, low_x, high_x):
208
+ x = self.ftb1(low_x)
209
+ x = x + high_x
210
+ x = self.ftb2(x)
211
+ x = self.upsample(x)
212
+
213
+ return x
214
+
215
+ def init_params(self):
216
+ for m in self.modules():
217
+ if isinstance(m, nn.Conv2d):
218
+ # init.kaiming_normal_(m.weight, mode='fan_out')
219
+ init.normal_(m.weight, std=0.01)
220
+ # init.xavier_normal_(m.weight)
221
+ if m.bias is not None:
222
+ init.constant_(m.bias, 0)
223
+ elif isinstance(m, nn.ConvTranspose2d):
224
+ # init.kaiming_normal_(m.weight, mode='fan_out')
225
+ init.normal_(m.weight, std=0.01)
226
+ # init.xavier_normal_(m.weight)
227
+ if m.bias is not None:
228
+ init.constant_(m.bias, 0)
229
+ elif isinstance(m, nn.BatchNorm2d): # NN.Batchnorm2d
230
+ init.constant_(m.weight, 1)
231
+ init.constant_(m.bias, 0)
232
+ elif isinstance(m, nn.Linear):
233
+ init.normal_(m.weight, std=0.01)
234
+ if m.bias is not None:
235
+ init.constant_(m.bias, 0)
236
+
237
+
238
+ class AO(nn.Module):
239
+ # Adaptive output module
240
+ def __init__(self, inchannels, outchannels, upfactor=2):
241
+ super(AO, self).__init__()
242
+ self.inchannels = inchannels
243
+ self.outchannels = outchannels
244
+ self.upfactor = upfactor
245
+
246
+ self.adapt_conv = nn.Sequential(
247
+ nn.Conv2d(in_channels=self.inchannels, out_channels=self.inchannels // 2, kernel_size=3, padding=1,
248
+ stride=1, bias=True), \
249
+ nn.BatchNorm2d(num_features=self.inchannels // 2), \
250
+ nn.ReLU(inplace=True), \
251
+ nn.Conv2d(in_channels=self.inchannels // 2, out_channels=self.outchannels, kernel_size=3, padding=1,
252
+ stride=1, bias=True), \
253
+ nn.Upsample(scale_factor=self.upfactor, mode='bilinear', align_corners=True))
254
+
255
+ self.init_params()
256
+
257
+ def forward(self, x):
258
+ x = self.adapt_conv(x)
259
+ return x
260
+
261
+ def init_params(self):
262
+ for m in self.modules():
263
+ if isinstance(m, nn.Conv2d):
264
+ # init.kaiming_normal_(m.weight, mode='fan_out')
265
+ init.normal_(m.weight, std=0.01)
266
+ # init.xavier_normal_(m.weight)
267
+ if m.bias is not None:
268
+ init.constant_(m.bias, 0)
269
+ elif isinstance(m, nn.ConvTranspose2d):
270
+ # init.kaiming_normal_(m.weight, mode='fan_out')
271
+ init.normal_(m.weight, std=0.01)
272
+ # init.xavier_normal_(m.weight)
273
+ if m.bias is not None:
274
+ init.constant_(m.bias, 0)
275
+ elif isinstance(m, nn.BatchNorm2d): # NN.Batchnorm2d
276
+ init.constant_(m.weight, 1)
277
+ init.constant_(m.bias, 0)
278
+ elif isinstance(m, nn.Linear):
279
+ init.normal_(m.weight, std=0.01)
280
+ if m.bias is not None:
281
+ init.constant_(m.bias, 0)
282
+
283
+
284
+
285
+ # ==============================================================================================================
286
+
287
+
288
+ class ResidualConv(nn.Module):
289
+ def __init__(self, inchannels):
290
+ super(ResidualConv, self).__init__()
291
+ # NN.BatchNorm2d
292
+ self.conv = nn.Sequential(
293
+ # nn.BatchNorm2d(num_features=inchannels),
294
+ nn.ReLU(inplace=False),
295
+ # nn.Conv2d(in_channels=inchannels, out_channels=inchannels, kernel_size=3, padding=1, stride=1, groups=inchannels,bias=True),
296
+ # nn.Conv2d(in_channels=inchannels, out_channels=inchannels, kernel_size=1, padding=0, stride=1, groups=1,bias=True)
297
+ nn.Conv2d(in_channels=inchannels, out_channels=inchannels / 2, kernel_size=3, padding=1, stride=1,
298
+ bias=False),
299
+ nn.BatchNorm2d(num_features=inchannels / 2),
300
+ nn.ReLU(inplace=False),
301
+ nn.Conv2d(in_channels=inchannels / 2, out_channels=inchannels, kernel_size=3, padding=1, stride=1,
302
+ bias=False)
303
+ )
304
+ self.init_params()
305
+
306
+ def forward(self, x):
307
+ x = self.conv(x) + x
308
+ return x
309
+
310
+ def init_params(self):
311
+ for m in self.modules():
312
+ if isinstance(m, nn.Conv2d):
313
+ # init.kaiming_normal_(m.weight, mode='fan_out')
314
+ init.normal_(m.weight, std=0.01)
315
+ # init.xavier_normal_(m.weight)
316
+ if m.bias is not None:
317
+ init.constant_(m.bias, 0)
318
+ elif isinstance(m, nn.ConvTranspose2d):
319
+ # init.kaiming_normal_(m.weight, mode='fan_out')
320
+ init.normal_(m.weight, std=0.01)
321
+ # init.xavier_normal_(m.weight)
322
+ if m.bias is not None:
323
+ init.constant_(m.bias, 0)
324
+ elif isinstance(m, nn.BatchNorm2d): # NN.BatchNorm2d
325
+ init.constant_(m.weight, 1)
326
+ init.constant_(m.bias, 0)
327
+ elif isinstance(m, nn.Linear):
328
+ init.normal_(m.weight, std=0.01)
329
+ if m.bias is not None:
330
+ init.constant_(m.bias, 0)
331
+
332
+
333
+ class FeatureFusion(nn.Module):
334
+ def __init__(self, inchannels, outchannels):
335
+ super(FeatureFusion, self).__init__()
336
+ self.conv = ResidualConv(inchannels=inchannels)
337
+ # NN.BatchNorm2d
338
+ self.up = nn.Sequential(ResidualConv(inchannels=inchannels),
339
+ nn.ConvTranspose2d(in_channels=inchannels, out_channels=outchannels, kernel_size=3,
340
+ stride=2, padding=1, output_padding=1),
341
+ nn.BatchNorm2d(num_features=outchannels),
342
+ nn.ReLU(inplace=True))
343
+
344
+ def forward(self, lowfeat, highfeat):
345
+ return self.up(highfeat + self.conv(lowfeat))
346
+
347
+ def init_params(self):
348
+ for m in self.modules():
349
+ if isinstance(m, nn.Conv2d):
350
+ # init.kaiming_normal_(m.weight, mode='fan_out')
351
+ init.normal_(m.weight, std=0.01)
352
+ # init.xavier_normal_(m.weight)
353
+ if m.bias is not None:
354
+ init.constant_(m.bias, 0)
355
+ elif isinstance(m, nn.ConvTranspose2d):
356
+ # init.kaiming_normal_(m.weight, mode='fan_out')
357
+ init.normal_(m.weight, std=0.01)
358
+ # init.xavier_normal_(m.weight)
359
+ if m.bias is not None:
360
+ init.constant_(m.bias, 0)
361
+ elif isinstance(m, nn.BatchNorm2d): # NN.BatchNorm2d
362
+ init.constant_(m.weight, 1)
363
+ init.constant_(m.bias, 0)
364
+ elif isinstance(m, nn.Linear):
365
+ init.normal_(m.weight, std=0.01)
366
+ if m.bias is not None:
367
+ init.constant_(m.bias, 0)
368
+
369
+
370
+ class SenceUnderstand(nn.Module):
371
+ def __init__(self, channels):
372
+ super(SenceUnderstand, self).__init__()
373
+ self.channels = channels
374
+ self.conv1 = nn.Sequential(nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, padding=1),
375
+ nn.ReLU(inplace=True))
376
+ self.pool = nn.AdaptiveAvgPool2d(8)
377
+ self.fc = nn.Sequential(nn.Linear(512 * 8 * 8, self.channels),
378
+ nn.ReLU(inplace=True))
379
+ self.conv2 = nn.Sequential(
380
+ nn.Conv2d(in_channels=self.channels, out_channels=self.channels, kernel_size=1, padding=0),
381
+ nn.ReLU(inplace=True))
382
+ self.initial_params()
383
+
384
+ def forward(self, x):
385
+ n, c, h, w = x.size()
386
+ x = self.conv1(x)
387
+ x = self.pool(x)
388
+ x = x.view(n, -1)
389
+ x = self.fc(x)
390
+ x = x.view(n, self.channels, 1, 1)
391
+ x = self.conv2(x)
392
+ x = x.repeat(1, 1, h, w)
393
+ return x
394
+
395
+ def initial_params(self, dev=0.01):
396
+ for m in self.modules():
397
+ if isinstance(m, nn.Conv2d):
398
+ # print torch.sum(m.weight)
399
+ m.weight.data.normal_(0, dev)
400
+ if m.bias is not None:
401
+ m.bias.data.fill_(0)
402
+ elif isinstance(m, nn.ConvTranspose2d):
403
+ # print torch.sum(m.weight)
404
+ m.weight.data.normal_(0, dev)
405
+ if m.bias is not None:
406
+ m.bias.data.fill_(0)
407
+ elif isinstance(m, nn.Linear):
408
+ m.weight.data.normal_(0, dev)
409
+
410
+
411
+ if __name__ == '__main__':
412
+ net = DepthNet(depth=50, pretrained=True)
413
+ print(net)
414
+ inputs = torch.ones(4,3,128,128)
415
+ out = net(inputs)
416
+ print(out.size())
417
+
controlnet_aux/src/controlnet_aux/leres/pix2pix/LICENSE ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ https://github.com/compphoto/BoostingMonocularDepth
2
+
3
+ Copyright 2021, Seyed Mahdi Hosseini Miangoleh, Sebastian Dille, Computational Photography Laboratory. All rights reserved.
4
+
5
+ This software is for academic use only. A redistribution of this
6
+ software, with or without modifications, has to be for academic
7
+ use only, while giving the appropriate credit to the original
8
+ authors of the software. The methods implemented as a part of
9
+ this software may be covered under patents or patent applications.
10
+
11
+ THIS SOFTWARE IS PROVIDED BY THE AUTHOR ''AS IS'' AND ANY EXPRESS OR IMPLIED
12
+ WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
13
+ FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR
14
+ CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
15
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
16
+ SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
17
+ ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
18
+ NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
19
+ ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
controlnet_aux/src/controlnet_aux/leres/pix2pix/__init__.py ADDED
File without changes
controlnet_aux/src/controlnet_aux/leres/pix2pix/models/__init__.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """This package contains modules related to objective functions, optimizations, and network architectures.
2
+
3
+ To add a custom model class called 'dummy', you need to add a file called 'dummy_model.py' and define a subclass DummyModel inherited from BaseModel.
4
+ You need to implement the following five functions:
5
+ -- <__init__>: initialize the class; first call BaseModel.__init__(self, opt).
6
+ -- <set_input>: unpack data from dataset and apply preprocessing.
7
+ -- <forward>: produce intermediate results.
8
+ -- <optimize_parameters>: calculate loss, gradients, and update network weights.
9
+ -- <modify_commandline_options>: (optionally) add model-specific options and set default options.
10
+
11
+ In the function <__init__>, you need to define four lists:
12
+ -- self.loss_names (str list): specify the training losses that you want to plot and save.
13
+ -- self.model_names (str list): define networks used in our training.
14
+ -- self.visual_names (str list): specify the images that you want to display and save.
15
+ -- self.optimizers (optimizer list): define and initialize optimizers. You can define one optimizer for each network. If two networks are updated at the same time, you can use itertools.chain to group them. See cycle_gan_model.py for an usage.
16
+
17
+ Now you can use the model class by specifying flag '--model dummy'.
18
+ See our template model class 'template_model.py' for more details.
19
+ """
20
+
21
+ import importlib
22
+ from .base_model import BaseModel
23
+
24
+
25
+ def find_model_using_name(model_name):
26
+ """Import the module "models/[model_name]_model.py".
27
+
28
+ In the file, the class called DatasetNameModel() will
29
+ be instantiated. It has to be a subclass of BaseModel,
30
+ and it is case-insensitive.
31
+ """
32
+ model_filename = "controlnet_aux.leres.pix2pix.models." + model_name + "_model"
33
+ modellib = importlib.import_module(model_filename)
34
+ model = None
35
+ target_model_name = model_name.replace('_', '') + 'model'
36
+ for name, cls in modellib.__dict__.items():
37
+ if name.lower() == target_model_name.lower() \
38
+ and issubclass(cls, BaseModel):
39
+ model = cls
40
+
41
+ if model is None:
42
+ print("In %s.py, there should be a subclass of BaseModel with class name that matches %s in lowercase." % (model_filename, target_model_name))
43
+ exit(0)
44
+
45
+ return model
46
+
47
+
48
+ def get_option_setter(model_name):
49
+ """Return the static method <modify_commandline_options> of the model class."""
50
+ model_class = find_model_using_name(model_name)
51
+ return model_class.modify_commandline_options
52
+
53
+
54
+ def create_model(opt):
55
+ """Create a model given the option.
56
+
57
+ This function warps the class CustomDatasetDataLoader.
58
+ This is the main interface between this package and 'train.py'/'test.py'
59
+
60
+ Example:
61
+ >>> from models import create_model
62
+ >>> model = create_model(opt)
63
+ """
64
+ model = find_model_using_name(opt.model)
65
+ instance = model(opt)
66
+ print("model [%s] was created" % type(instance).__name__)
67
+ return instance
controlnet_aux/src/controlnet_aux/leres/pix2pix/models/base_model.py ADDED
@@ -0,0 +1,244 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gc
2
+ import os
3
+ from abc import ABC, abstractmethod
4
+ from collections import OrderedDict
5
+
6
+ import torch
7
+
8
+ from ....util import torch_gc
9
+ from . import networks
10
+
11
+
12
+ class BaseModel(ABC):
13
+ """This class is an abstract base class (ABC) for models.
14
+ To create a subclass, you need to implement the following five functions:
15
+ -- <__init__>: initialize the class; first call BaseModel.__init__(self, opt).
16
+ -- <set_input>: unpack data from dataset and apply preprocessing.
17
+ -- <forward>: produce intermediate results.
18
+ -- <optimize_parameters>: calculate losses, gradients, and update network weights.
19
+ -- <modify_commandline_options>: (optionally) add model-specific options and set default options.
20
+ """
21
+
22
+ def __init__(self, opt):
23
+ """Initialize the BaseModel class.
24
+
25
+ Parameters:
26
+ opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions
27
+
28
+ When creating your custom class, you need to implement your own initialization.
29
+ In this function, you should first call <BaseModel.__init__(self, opt)>
30
+ Then, you need to define four lists:
31
+ -- self.loss_names (str list): specify the training losses that you want to plot and save.
32
+ -- self.model_names (str list): define networks used in our training.
33
+ -- self.visual_names (str list): specify the images that you want to display and save.
34
+ -- self.optimizers (optimizer list): define and initialize optimizers. You can define one optimizer for each network. If two networks are updated at the same time, you can use itertools.chain to group them. See cycle_gan_model.py for an example.
35
+ """
36
+ self.opt = opt
37
+ self.gpu_ids = opt.gpu_ids
38
+ self.isTrain = opt.isTrain
39
+ self.device = torch.device('cuda:{}'.format(self.gpu_ids[0])) if self.gpu_ids else torch.device('cpu') # get device name: CPU or GPU
40
+ self.save_dir = os.path.join(opt.checkpoints_dir, opt.name) # save all the checkpoints to save_dir
41
+ if opt.preprocess != 'scale_width': # with [scale_width], input images might have different sizes, which hurts the performance of cudnn.benchmark.
42
+ torch.backends.cudnn.benchmark = True
43
+ self.loss_names = []
44
+ self.model_names = []
45
+ self.visual_names = []
46
+ self.optimizers = []
47
+ self.image_paths = []
48
+ self.metric = 0 # used for learning rate policy 'plateau'
49
+
50
+ @staticmethod
51
+ def modify_commandline_options(parser, is_train):
52
+ """Add new model-specific options, and rewrite default values for existing options.
53
+
54
+ Parameters:
55
+ parser -- original option parser
56
+ is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options.
57
+
58
+ Returns:
59
+ the modified parser.
60
+ """
61
+ return parser
62
+
63
+ @abstractmethod
64
+ def set_input(self, input):
65
+ """Unpack input data from the dataloader and perform necessary pre-processing steps.
66
+
67
+ Parameters:
68
+ input (dict): includes the data itself and its metadata information.
69
+ """
70
+ pass
71
+
72
+ @abstractmethod
73
+ def forward(self):
74
+ """Run forward pass; called by both functions <optimize_parameters> and <test>."""
75
+ pass
76
+
77
+ @abstractmethod
78
+ def optimize_parameters(self):
79
+ """Calculate losses, gradients, and update network weights; called in every training iteration"""
80
+ pass
81
+
82
+ def setup(self, opt):
83
+ """Load and print networks; create schedulers
84
+
85
+ Parameters:
86
+ opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions
87
+ """
88
+ if self.isTrain:
89
+ self.schedulers = [networks.get_scheduler(optimizer, opt) for optimizer in self.optimizers]
90
+ if not self.isTrain or opt.continue_train:
91
+ load_suffix = 'iter_%d' % opt.load_iter if opt.load_iter > 0 else opt.epoch
92
+ self.load_networks(load_suffix)
93
+ self.print_networks(opt.verbose)
94
+
95
+ def eval(self):
96
+ """Make models eval mode during test time"""
97
+ for name in self.model_names:
98
+ if isinstance(name, str):
99
+ net = getattr(self, 'net' + name)
100
+ net.eval()
101
+
102
+ def test(self):
103
+ """Forward function used in test time.
104
+
105
+ This function wraps <forward> function in no_grad() so we don't save intermediate steps for backprop
106
+ It also calls <compute_visuals> to produce additional visualization results
107
+ """
108
+ with torch.no_grad():
109
+ self.forward()
110
+ self.compute_visuals()
111
+
112
+ def compute_visuals(self):
113
+ """Calculate additional output images for visdom and HTML visualization"""
114
+ pass
115
+
116
+ def get_image_paths(self):
117
+ """ Return image paths that are used to load current data"""
118
+ return self.image_paths
119
+
120
+ def update_learning_rate(self):
121
+ """Update learning rates for all the networks; called at the end of every epoch"""
122
+ old_lr = self.optimizers[0].param_groups[0]['lr']
123
+ for scheduler in self.schedulers:
124
+ if self.opt.lr_policy == 'plateau':
125
+ scheduler.step(self.metric)
126
+ else:
127
+ scheduler.step()
128
+
129
+ lr = self.optimizers[0].param_groups[0]['lr']
130
+ print('learning rate %.7f -> %.7f' % (old_lr, lr))
131
+
132
+ def get_current_visuals(self):
133
+ """Return visualization images. train.py will display these images with visdom, and save the images to a HTML"""
134
+ visual_ret = OrderedDict()
135
+ for name in self.visual_names:
136
+ if isinstance(name, str):
137
+ visual_ret[name] = getattr(self, name)
138
+ return visual_ret
139
+
140
+ def get_current_losses(self):
141
+ """Return traning losses / errors. train.py will print out these errors on console, and save them to a file"""
142
+ errors_ret = OrderedDict()
143
+ for name in self.loss_names:
144
+ if isinstance(name, str):
145
+ errors_ret[name] = float(getattr(self, 'loss_' + name)) # float(...) works for both scalar tensor and float number
146
+ return errors_ret
147
+
148
+ def save_networks(self, epoch):
149
+ """Save all the networks to the disk.
150
+
151
+ Parameters:
152
+ epoch (int) -- current epoch; used in the file name '%s_net_%s.pth' % (epoch, name)
153
+ """
154
+ for name in self.model_names:
155
+ if isinstance(name, str):
156
+ save_filename = '%s_net_%s.pth' % (epoch, name)
157
+ save_path = os.path.join(self.save_dir, save_filename)
158
+ net = getattr(self, 'net' + name)
159
+
160
+ if len(self.gpu_ids) > 0 and torch.cuda.is_available():
161
+ torch.save(net.module.cpu().state_dict(), save_path)
162
+ net.cuda(self.gpu_ids[0])
163
+ else:
164
+ torch.save(net.cpu().state_dict(), save_path)
165
+
166
+ def unload_network(self, name):
167
+ """Unload network and gc.
168
+ """
169
+ if isinstance(name, str):
170
+ net = getattr(self, 'net' + name)
171
+ del net
172
+ gc.collect()
173
+ torch_gc()
174
+ return None
175
+
176
+ def __patch_instance_norm_state_dict(self, state_dict, module, keys, i=0):
177
+ """Fix InstanceNorm checkpoints incompatibility (prior to 0.4)"""
178
+ key = keys[i]
179
+ if i + 1 == len(keys): # at the end, pointing to a parameter/buffer
180
+ if module.__class__.__name__.startswith('InstanceNorm') and \
181
+ (key == 'running_mean' or key == 'running_var'):
182
+ if getattr(module, key) is None:
183
+ state_dict.pop('.'.join(keys))
184
+ if module.__class__.__name__.startswith('InstanceNorm') and \
185
+ (key == 'num_batches_tracked'):
186
+ state_dict.pop('.'.join(keys))
187
+ else:
188
+ self.__patch_instance_norm_state_dict(state_dict, getattr(module, key), keys, i + 1)
189
+
190
+ def load_networks(self, epoch):
191
+ """Load all the networks from the disk.
192
+
193
+ Parameters:
194
+ epoch (int) -- current epoch; used in the file name '%s_net_%s.pth' % (epoch, name)
195
+ """
196
+ for name in self.model_names:
197
+ if isinstance(name, str):
198
+ load_filename = '%s_net_%s.pth' % (epoch, name)
199
+ load_path = os.path.join(self.save_dir, load_filename)
200
+ net = getattr(self, 'net' + name)
201
+ if isinstance(net, torch.nn.DataParallel):
202
+ net = net.module
203
+ # print('Loading depth boost model from %s' % load_path)
204
+ # if you are using PyTorch newer than 0.4 (e.g., built from
205
+ # GitHub source), you can remove str() on self.device
206
+ state_dict = torch.load(load_path, map_location=str(self.device))
207
+ if hasattr(state_dict, '_metadata'):
208
+ del state_dict._metadata
209
+
210
+ # patch InstanceNorm checkpoints prior to 0.4
211
+ for key in list(state_dict.keys()): # need to copy keys here because we mutate in loop
212
+ self.__patch_instance_norm_state_dict(state_dict, net, key.split('.'))
213
+ net.load_state_dict(state_dict)
214
+
215
+ def print_networks(self, verbose):
216
+ """Print the total number of parameters in the network and (if verbose) network architecture
217
+
218
+ Parameters:
219
+ verbose (bool) -- if verbose: print the network architecture
220
+ """
221
+ print('---------- Networks initialized -------------')
222
+ for name in self.model_names:
223
+ if isinstance(name, str):
224
+ net = getattr(self, 'net' + name)
225
+ num_params = 0
226
+ for param in net.parameters():
227
+ num_params += param.numel()
228
+ if verbose:
229
+ print(net)
230
+ print('[Network %s] Total number of parameters : %.3f M' % (name, num_params / 1e6))
231
+ print('-----------------------------------------------')
232
+
233
+ def set_requires_grad(self, nets, requires_grad=False):
234
+ """Set requies_grad=Fasle for all the networks to avoid unnecessary computations
235
+ Parameters:
236
+ nets (network list) -- a list of networks
237
+ requires_grad (bool) -- whether the networks require gradients or not
238
+ """
239
+ if not isinstance(nets, list):
240
+ nets = [nets]
241
+ for net in nets:
242
+ if net is not None:
243
+ for param in net.parameters():
244
+ param.requires_grad = requires_grad
controlnet_aux/src/controlnet_aux/leres/pix2pix/models/base_model_hg.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+
4
+ class BaseModelHG():
5
+ def name(self):
6
+ return 'BaseModel'
7
+
8
+ def initialize(self, opt):
9
+ self.opt = opt
10
+ self.gpu_ids = opt.gpu_ids
11
+ self.isTrain = opt.isTrain
12
+ self.Tensor = torch.cuda.FloatTensor if self.gpu_ids else torch.Tensor
13
+ self.save_dir = os.path.join(opt.checkpoints_dir, opt.name)
14
+
15
+ def set_input(self, input):
16
+ self.input = input
17
+
18
+ def forward(self):
19
+ pass
20
+
21
+ # used in test time, no backprop
22
+ def test(self):
23
+ pass
24
+
25
+ def get_image_paths(self):
26
+ pass
27
+
28
+ def optimize_parameters(self):
29
+ pass
30
+
31
+ def get_current_visuals(self):
32
+ return self.input
33
+
34
+ def get_current_errors(self):
35
+ return {}
36
+
37
+ def save(self, label):
38
+ pass
39
+
40
+ # helper saving function that can be used by subclasses
41
+ def save_network(self, network, network_label, epoch_label, gpu_ids):
42
+ save_filename = '_%s_net_%s.pth' % (epoch_label, network_label)
43
+ save_path = os.path.join(self.save_dir, save_filename)
44
+ torch.save(network.cpu().state_dict(), save_path)
45
+ if len(gpu_ids) and torch.cuda.is_available():
46
+ network.cuda(device_id=gpu_ids[0])
47
+
48
+ # helper loading function that can be used by subclasses
49
+ def load_network(self, network, network_label, epoch_label):
50
+ save_filename = '%s_net_%s.pth' % (epoch_label, network_label)
51
+ save_path = os.path.join(self.save_dir, save_filename)
52
+ print(save_path)
53
+ model = torch.load(save_path)
54
+ return model
55
+ # network.load_state_dict(torch.load(save_path))
56
+
57
+ def update_learning_rate():
58
+ pass
controlnet_aux/src/controlnet_aux/leres/pix2pix/models/networks.py ADDED
@@ -0,0 +1,623 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from torch.nn import init
4
+ import functools
5
+ from torch.optim import lr_scheduler
6
+
7
+
8
+ ###############################################################################
9
+ # Helper Functions
10
+ ###############################################################################
11
+
12
+
13
+ class Identity(nn.Module):
14
+ def forward(self, x):
15
+ return x
16
+
17
+
18
+ def get_norm_layer(norm_type='instance'):
19
+ """Return a normalization layer
20
+
21
+ Parameters:
22
+ norm_type (str) -- the name of the normalization layer: batch | instance | none
23
+
24
+ For BatchNorm, we use learnable affine parameters and track running statistics (mean/stddev).
25
+ For InstanceNorm, we do not use learnable affine parameters. We do not track running statistics.
26
+ """
27
+ if norm_type == 'batch':
28
+ norm_layer = functools.partial(nn.BatchNorm2d, affine=True, track_running_stats=True)
29
+ elif norm_type == 'instance':
30
+ norm_layer = functools.partial(nn.InstanceNorm2d, affine=False, track_running_stats=False)
31
+ elif norm_type == 'none':
32
+ def norm_layer(x): return Identity()
33
+ else:
34
+ raise NotImplementedError('normalization layer [%s] is not found' % norm_type)
35
+ return norm_layer
36
+
37
+
38
+ def get_scheduler(optimizer, opt):
39
+ """Return a learning rate scheduler
40
+
41
+ Parameters:
42
+ optimizer -- the optimizer of the network
43
+ opt (option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions. 
44
+ opt.lr_policy is the name of learning rate policy: linear | step | plateau | cosine
45
+
46
+ For 'linear', we keep the same learning rate for the first <opt.n_epochs> epochs
47
+ and linearly decay the rate to zero over the next <opt.n_epochs_decay> epochs.
48
+ For other schedulers (step, plateau, and cosine), we use the default PyTorch schedulers.
49
+ See https://pytorch.org/docs/stable/optim.html for more details.
50
+ """
51
+ if opt.lr_policy == 'linear':
52
+ def lambda_rule(epoch):
53
+ lr_l = 1.0 - max(0, epoch + opt.epoch_count - opt.n_epochs) / float(opt.n_epochs_decay + 1)
54
+ return lr_l
55
+ scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_rule)
56
+ elif opt.lr_policy == 'step':
57
+ scheduler = lr_scheduler.StepLR(optimizer, step_size=opt.lr_decay_iters, gamma=0.1)
58
+ elif opt.lr_policy == 'plateau':
59
+ scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.2, threshold=0.01, patience=5)
60
+ elif opt.lr_policy == 'cosine':
61
+ scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=opt.n_epochs, eta_min=0)
62
+ else:
63
+ return NotImplementedError('learning rate policy [%s] is not implemented', opt.lr_policy)
64
+ return scheduler
65
+
66
+
67
+ def init_weights(net, init_type='normal', init_gain=0.02):
68
+ """Initialize network weights.
69
+
70
+ Parameters:
71
+ net (network) -- network to be initialized
72
+ init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal
73
+ init_gain (float) -- scaling factor for normal, xavier and orthogonal.
74
+
75
+ We use 'normal' in the original pix2pix and CycleGAN paper. But xavier and kaiming might
76
+ work better for some applications. Feel free to try yourself.
77
+ """
78
+ def init_func(m): # define the initialization function
79
+ classname = m.__class__.__name__
80
+ if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
81
+ if init_type == 'normal':
82
+ init.normal_(m.weight.data, 0.0, init_gain)
83
+ elif init_type == 'xavier':
84
+ init.xavier_normal_(m.weight.data, gain=init_gain)
85
+ elif init_type == 'kaiming':
86
+ init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
87
+ elif init_type == 'orthogonal':
88
+ init.orthogonal_(m.weight.data, gain=init_gain)
89
+ else:
90
+ raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
91
+ if hasattr(m, 'bias') and m.bias is not None:
92
+ init.constant_(m.bias.data, 0.0)
93
+ elif classname.find('BatchNorm2d') != -1: # BatchNorm Layer's weight is not a matrix; only normal distribution applies.
94
+ init.normal_(m.weight.data, 1.0, init_gain)
95
+ init.constant_(m.bias.data, 0.0)
96
+
97
+ # print('initialize network with %s' % init_type)
98
+ net.apply(init_func) # apply the initialization function <init_func>
99
+
100
+
101
+ def init_net(net, init_type='normal', init_gain=0.02, gpu_ids=[]):
102
+ """Initialize a network: 1. register CPU/GPU device (with multi-GPU support); 2. initialize the network weights
103
+ Parameters:
104
+ net (network) -- the network to be initialized
105
+ init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal
106
+ gain (float) -- scaling factor for normal, xavier and orthogonal.
107
+ gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2
108
+
109
+ Return an initialized network.
110
+ """
111
+ if len(gpu_ids) > 0:
112
+ assert(torch.cuda.is_available())
113
+ net.to(gpu_ids[0])
114
+ net = torch.nn.DataParallel(net, gpu_ids) # multi-GPUs
115
+ init_weights(net, init_type, init_gain=init_gain)
116
+ return net
117
+
118
+
119
+ def define_G(input_nc, output_nc, ngf, netG, norm='batch', use_dropout=False, init_type='normal', init_gain=0.02, gpu_ids=[]):
120
+ """Create a generator
121
+
122
+ Parameters:
123
+ input_nc (int) -- the number of channels in input images
124
+ output_nc (int) -- the number of channels in output images
125
+ ngf (int) -- the number of filters in the last conv layer
126
+ netG (str) -- the architecture's name: resnet_9blocks | resnet_6blocks | unet_256 | unet_128
127
+ norm (str) -- the name of normalization layers used in the network: batch | instance | none
128
+ use_dropout (bool) -- if use dropout layers.
129
+ init_type (str) -- the name of our initialization method.
130
+ init_gain (float) -- scaling factor for normal, xavier and orthogonal.
131
+ gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2
132
+
133
+ Returns a generator
134
+
135
+ Our current implementation provides two types of generators:
136
+ U-Net: [unet_128] (for 128x128 input images) and [unet_256] (for 256x256 input images)
137
+ The original U-Net paper: https://arxiv.org/abs/1505.04597
138
+
139
+ Resnet-based generator: [resnet_6blocks] (with 6 Resnet blocks) and [resnet_9blocks] (with 9 Resnet blocks)
140
+ Resnet-based generator consists of several Resnet blocks between a few downsampling/upsampling operations.
141
+ We adapt Torch code from Justin Johnson's neural style transfer project (https://github.com/jcjohnson/fast-neural-style).
142
+
143
+
144
+ The generator has been initialized by <init_net>. It uses RELU for non-linearity.
145
+ """
146
+ net = None
147
+ norm_layer = get_norm_layer(norm_type=norm)
148
+
149
+ if netG == 'resnet_9blocks':
150
+ net = ResnetGenerator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=9)
151
+ elif netG == 'resnet_6blocks':
152
+ net = ResnetGenerator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=6)
153
+ elif netG == 'resnet_12blocks':
154
+ net = ResnetGenerator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=12)
155
+ elif netG == 'unet_128':
156
+ net = UnetGenerator(input_nc, output_nc, 7, ngf, norm_layer=norm_layer, use_dropout=use_dropout)
157
+ elif netG == 'unet_256':
158
+ net = UnetGenerator(input_nc, output_nc, 8, ngf, norm_layer=norm_layer, use_dropout=use_dropout)
159
+ elif netG == 'unet_672':
160
+ net = UnetGenerator(input_nc, output_nc, 5, ngf, norm_layer=norm_layer, use_dropout=use_dropout)
161
+ elif netG == 'unet_960':
162
+ net = UnetGenerator(input_nc, output_nc, 6, ngf, norm_layer=norm_layer, use_dropout=use_dropout)
163
+ elif netG == 'unet_1024':
164
+ net = UnetGenerator(input_nc, output_nc, 10, ngf, norm_layer=norm_layer, use_dropout=use_dropout)
165
+ else:
166
+ raise NotImplementedError('Generator model name [%s] is not recognized' % netG)
167
+ return init_net(net, init_type, init_gain, gpu_ids)
168
+
169
+
170
+ def define_D(input_nc, ndf, netD, n_layers_D=3, norm='batch', init_type='normal', init_gain=0.02, gpu_ids=[]):
171
+ """Create a discriminator
172
+
173
+ Parameters:
174
+ input_nc (int) -- the number of channels in input images
175
+ ndf (int) -- the number of filters in the first conv layer
176
+ netD (str) -- the architecture's name: basic | n_layers | pixel
177
+ n_layers_D (int) -- the number of conv layers in the discriminator; effective when netD=='n_layers'
178
+ norm (str) -- the type of normalization layers used in the network.
179
+ init_type (str) -- the name of the initialization method.
180
+ init_gain (float) -- scaling factor for normal, xavier and orthogonal.
181
+ gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2
182
+
183
+ Returns a discriminator
184
+
185
+ Our current implementation provides three types of discriminators:
186
+ [basic]: 'PatchGAN' classifier described in the original pix2pix paper.
187
+ It can classify whether 70×70 overlapping patches are real or fake.
188
+ Such a patch-level discriminator architecture has fewer parameters
189
+ than a full-image discriminator and can work on arbitrarily-sized images
190
+ in a fully convolutional fashion.
191
+
192
+ [n_layers]: With this mode, you can specify the number of conv layers in the discriminator
193
+ with the parameter <n_layers_D> (default=3 as used in [basic] (PatchGAN).)
194
+
195
+ [pixel]: 1x1 PixelGAN discriminator can classify whether a pixel is real or not.
196
+ It encourages greater color diversity but has no effect on spatial statistics.
197
+
198
+ The discriminator has been initialized by <init_net>. It uses Leakly RELU for non-linearity.
199
+ """
200
+ net = None
201
+ norm_layer = get_norm_layer(norm_type=norm)
202
+
203
+ if netD == 'basic': # default PatchGAN classifier
204
+ net = NLayerDiscriminator(input_nc, ndf, n_layers=3, norm_layer=norm_layer)
205
+ elif netD == 'n_layers': # more options
206
+ net = NLayerDiscriminator(input_nc, ndf, n_layers_D, norm_layer=norm_layer)
207
+ elif netD == 'pixel': # classify if each pixel is real or fake
208
+ net = PixelDiscriminator(input_nc, ndf, norm_layer=norm_layer)
209
+ else:
210
+ raise NotImplementedError('Discriminator model name [%s] is not recognized' % netD)
211
+ return init_net(net, init_type, init_gain, gpu_ids)
212
+
213
+
214
+ ##############################################################################
215
+ # Classes
216
+ ##############################################################################
217
+ class GANLoss(nn.Module):
218
+ """Define different GAN objectives.
219
+
220
+ The GANLoss class abstracts away the need to create the target label tensor
221
+ that has the same size as the input.
222
+ """
223
+
224
+ def __init__(self, gan_mode, target_real_label=1.0, target_fake_label=0.0):
225
+ """ Initialize the GANLoss class.
226
+
227
+ Parameters:
228
+ gan_mode (str) - - the type of GAN objective. It currently supports vanilla, lsgan, and wgangp.
229
+ target_real_label (bool) - - label for a real image
230
+ target_fake_label (bool) - - label of a fake image
231
+
232
+ Note: Do not use sigmoid as the last layer of Discriminator.
233
+ LSGAN needs no sigmoid. vanilla GANs will handle it with BCEWithLogitsLoss.
234
+ """
235
+ super(GANLoss, self).__init__()
236
+ self.register_buffer('real_label', torch.tensor(target_real_label))
237
+ self.register_buffer('fake_label', torch.tensor(target_fake_label))
238
+ self.gan_mode = gan_mode
239
+ if gan_mode == 'lsgan':
240
+ self.loss = nn.MSELoss()
241
+ elif gan_mode == 'vanilla':
242
+ self.loss = nn.BCEWithLogitsLoss()
243
+ elif gan_mode in ['wgangp']:
244
+ self.loss = None
245
+ else:
246
+ raise NotImplementedError('gan mode %s not implemented' % gan_mode)
247
+
248
+ def get_target_tensor(self, prediction, target_is_real):
249
+ """Create label tensors with the same size as the input.
250
+
251
+ Parameters:
252
+ prediction (tensor) - - tpyically the prediction from a discriminator
253
+ target_is_real (bool) - - if the ground truth label is for real images or fake images
254
+
255
+ Returns:
256
+ A label tensor filled with ground truth label, and with the size of the input
257
+ """
258
+
259
+ if target_is_real:
260
+ target_tensor = self.real_label
261
+ else:
262
+ target_tensor = self.fake_label
263
+ return target_tensor.expand_as(prediction)
264
+
265
+ def __call__(self, prediction, target_is_real):
266
+ """Calculate loss given Discriminator's output and grount truth labels.
267
+
268
+ Parameters:
269
+ prediction (tensor) - - tpyically the prediction output from a discriminator
270
+ target_is_real (bool) - - if the ground truth label is for real images or fake images
271
+
272
+ Returns:
273
+ the calculated loss.
274
+ """
275
+ if self.gan_mode in ['lsgan', 'vanilla']:
276
+ target_tensor = self.get_target_tensor(prediction, target_is_real)
277
+ loss = self.loss(prediction, target_tensor)
278
+ elif self.gan_mode == 'wgangp':
279
+ if target_is_real:
280
+ loss = -prediction.mean()
281
+ else:
282
+ loss = prediction.mean()
283
+ return loss
284
+
285
+
286
+ def cal_gradient_penalty(netD, real_data, fake_data, device, type='mixed', constant=1.0, lambda_gp=10.0):
287
+ """Calculate the gradient penalty loss, used in WGAN-GP paper https://arxiv.org/abs/1704.00028
288
+
289
+ Arguments:
290
+ netD (network) -- discriminator network
291
+ real_data (tensor array) -- real images
292
+ fake_data (tensor array) -- generated images from the generator
293
+ device (str) -- GPU / CPU: from torch.device('cuda:{}'.format(self.gpu_ids[0])) if self.gpu_ids else torch.device('cpu')
294
+ type (str) -- if we mix real and fake data or not [real | fake | mixed].
295
+ constant (float) -- the constant used in formula ( ||gradient||_2 - constant)^2
296
+ lambda_gp (float) -- weight for this loss
297
+
298
+ Returns the gradient penalty loss
299
+ """
300
+ if lambda_gp > 0.0:
301
+ if type == 'real': # either use real images, fake images, or a linear interpolation of two.
302
+ interpolatesv = real_data
303
+ elif type == 'fake':
304
+ interpolatesv = fake_data
305
+ elif type == 'mixed':
306
+ alpha = torch.rand(real_data.shape[0], 1, device=device)
307
+ alpha = alpha.expand(real_data.shape[0], real_data.nelement() // real_data.shape[0]).contiguous().view(*real_data.shape)
308
+ interpolatesv = alpha * real_data + ((1 - alpha) * fake_data)
309
+ else:
310
+ raise NotImplementedError('{} not implemented'.format(type))
311
+ interpolatesv.requires_grad_(True)
312
+ disc_interpolates = netD(interpolatesv)
313
+ gradients = torch.autograd.grad(outputs=disc_interpolates, inputs=interpolatesv,
314
+ grad_outputs=torch.ones(disc_interpolates.size()).to(device),
315
+ create_graph=True, retain_graph=True, only_inputs=True)
316
+ gradients = gradients[0].view(real_data.size(0), -1) # flat the data
317
+ gradient_penalty = (((gradients + 1e-16).norm(2, dim=1) - constant) ** 2).mean() * lambda_gp # added eps
318
+ return gradient_penalty, gradients
319
+ else:
320
+ return 0.0, None
321
+
322
+
323
+ class ResnetGenerator(nn.Module):
324
+ """Resnet-based generator that consists of Resnet blocks between a few downsampling/upsampling operations.
325
+
326
+ We adapt Torch code and idea from Justin Johnson's neural style transfer project(https://github.com/jcjohnson/fast-neural-style)
327
+ """
328
+
329
+ def __init__(self, input_nc, output_nc, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False, n_blocks=6, padding_type='reflect'):
330
+ """Construct a Resnet-based generator
331
+
332
+ Parameters:
333
+ input_nc (int) -- the number of channels in input images
334
+ output_nc (int) -- the number of channels in output images
335
+ ngf (int) -- the number of filters in the last conv layer
336
+ norm_layer -- normalization layer
337
+ use_dropout (bool) -- if use dropout layers
338
+ n_blocks (int) -- the number of ResNet blocks
339
+ padding_type (str) -- the name of padding layer in conv layers: reflect | replicate | zero
340
+ """
341
+ assert(n_blocks >= 0)
342
+ super(ResnetGenerator, self).__init__()
343
+ if type(norm_layer) == functools.partial:
344
+ use_bias = norm_layer.func == nn.InstanceNorm2d
345
+ else:
346
+ use_bias = norm_layer == nn.InstanceNorm2d
347
+
348
+ model = [nn.ReflectionPad2d(3),
349
+ nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0, bias=use_bias),
350
+ norm_layer(ngf),
351
+ nn.ReLU(True)]
352
+
353
+ n_downsampling = 2
354
+ for i in range(n_downsampling): # add downsampling layers
355
+ mult = 2 ** i
356
+ model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1, bias=use_bias),
357
+ norm_layer(ngf * mult * 2),
358
+ nn.ReLU(True)]
359
+
360
+ mult = 2 ** n_downsampling
361
+ for i in range(n_blocks): # add ResNet blocks
362
+
363
+ model += [ResnetBlock(ngf * mult, padding_type=padding_type, norm_layer=norm_layer, use_dropout=use_dropout, use_bias=use_bias)]
364
+
365
+ for i in range(n_downsampling): # add upsampling layers
366
+ mult = 2 ** (n_downsampling - i)
367
+ model += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2),
368
+ kernel_size=3, stride=2,
369
+ padding=1, output_padding=1,
370
+ bias=use_bias),
371
+ norm_layer(int(ngf * mult / 2)),
372
+ nn.ReLU(True)]
373
+ model += [nn.ReflectionPad2d(3)]
374
+ model += [nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)]
375
+ model += [nn.Tanh()]
376
+
377
+ self.model = nn.Sequential(*model)
378
+
379
+ def forward(self, input):
380
+ """Standard forward"""
381
+ return self.model(input)
382
+
383
+
384
+ class ResnetBlock(nn.Module):
385
+ """Define a Resnet block"""
386
+
387
+ def __init__(self, dim, padding_type, norm_layer, use_dropout, use_bias):
388
+ """Initialize the Resnet block
389
+
390
+ A resnet block is a conv block with skip connections
391
+ We construct a conv block with build_conv_block function,
392
+ and implement skip connections in <forward> function.
393
+ Original Resnet paper: https://arxiv.org/pdf/1512.03385.pdf
394
+ """
395
+ super(ResnetBlock, self).__init__()
396
+ self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, use_dropout, use_bias)
397
+
398
+ def build_conv_block(self, dim, padding_type, norm_layer, use_dropout, use_bias):
399
+ """Construct a convolutional block.
400
+
401
+ Parameters:
402
+ dim (int) -- the number of channels in the conv layer.
403
+ padding_type (str) -- the name of padding layer: reflect | replicate | zero
404
+ norm_layer -- normalization layer
405
+ use_dropout (bool) -- if use dropout layers.
406
+ use_bias (bool) -- if the conv layer uses bias or not
407
+
408
+ Returns a conv block (with a conv layer, a normalization layer, and a non-linearity layer (ReLU))
409
+ """
410
+ conv_block = []
411
+ p = 0
412
+ if padding_type == 'reflect':
413
+ conv_block += [nn.ReflectionPad2d(1)]
414
+ elif padding_type == 'replicate':
415
+ conv_block += [nn.ReplicationPad2d(1)]
416
+ elif padding_type == 'zero':
417
+ p = 1
418
+ else:
419
+ raise NotImplementedError('padding [%s] is not implemented' % padding_type)
420
+
421
+ conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim), nn.ReLU(True)]
422
+ if use_dropout:
423
+ conv_block += [nn.Dropout(0.5)]
424
+
425
+ p = 0
426
+ if padding_type == 'reflect':
427
+ conv_block += [nn.ReflectionPad2d(1)]
428
+ elif padding_type == 'replicate':
429
+ conv_block += [nn.ReplicationPad2d(1)]
430
+ elif padding_type == 'zero':
431
+ p = 1
432
+ else:
433
+ raise NotImplementedError('padding [%s] is not implemented' % padding_type)
434
+ conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim)]
435
+
436
+ return nn.Sequential(*conv_block)
437
+
438
+ def forward(self, x):
439
+ """Forward function (with skip connections)"""
440
+ out = x + self.conv_block(x) # add skip connections
441
+ return out
442
+
443
+
444
+ class UnetGenerator(nn.Module):
445
+ """Create a Unet-based generator"""
446
+
447
+ def __init__(self, input_nc, output_nc, num_downs, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False):
448
+ """Construct a Unet generator
449
+ Parameters:
450
+ input_nc (int) -- the number of channels in input images
451
+ output_nc (int) -- the number of channels in output images
452
+ num_downs (int) -- the number of downsamplings in UNet. For example, # if |num_downs| == 7,
453
+ image of size 128x128 will become of size 1x1 # at the bottleneck
454
+ ngf (int) -- the number of filters in the last conv layer
455
+ norm_layer -- normalization layer
456
+
457
+ We construct the U-Net from the innermost layer to the outermost layer.
458
+ It is a recursive process.
459
+ """
460
+ super(UnetGenerator, self).__init__()
461
+ # construct unet structure
462
+ unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=None, norm_layer=norm_layer, innermost=True) # add the innermost layer
463
+ for i in range(num_downs - 5): # add intermediate layers with ngf * 8 filters
464
+ unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer, use_dropout=use_dropout)
465
+ # gradually reduce the number of filters from ngf * 8 to ngf
466
+ unet_block = UnetSkipConnectionBlock(ngf * 4, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
467
+ unet_block = UnetSkipConnectionBlock(ngf * 2, ngf * 4, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
468
+ unet_block = UnetSkipConnectionBlock(ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
469
+ self.model = UnetSkipConnectionBlock(output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True, norm_layer=norm_layer) # add the outermost layer
470
+
471
+ def forward(self, input):
472
+ """Standard forward"""
473
+ return self.model(input)
474
+
475
+
476
+ class UnetSkipConnectionBlock(nn.Module):
477
+ """Defines the Unet submodule with skip connection.
478
+ X -------------------identity----------------------
479
+ |-- downsampling -- |submodule| -- upsampling --|
480
+ """
481
+
482
+ def __init__(self, outer_nc, inner_nc, input_nc=None,
483
+ submodule=None, outermost=False, innermost=False, norm_layer=nn.BatchNorm2d, use_dropout=False):
484
+ """Construct a Unet submodule with skip connections.
485
+
486
+ Parameters:
487
+ outer_nc (int) -- the number of filters in the outer conv layer
488
+ inner_nc (int) -- the number of filters in the inner conv layer
489
+ input_nc (int) -- the number of channels in input images/features
490
+ submodule (UnetSkipConnectionBlock) -- previously defined submodules
491
+ outermost (bool) -- if this module is the outermost module
492
+ innermost (bool) -- if this module is the innermost module
493
+ norm_layer -- normalization layer
494
+ use_dropout (bool) -- if use dropout layers.
495
+ """
496
+ super(UnetSkipConnectionBlock, self).__init__()
497
+ self.outermost = outermost
498
+ if type(norm_layer) == functools.partial:
499
+ use_bias = norm_layer.func == nn.InstanceNorm2d
500
+ else:
501
+ use_bias = norm_layer == nn.InstanceNorm2d
502
+ if input_nc is None:
503
+ input_nc = outer_nc
504
+ downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4,
505
+ stride=2, padding=1, bias=use_bias)
506
+ downrelu = nn.LeakyReLU(0.2, True)
507
+ downnorm = norm_layer(inner_nc)
508
+ uprelu = nn.ReLU(True)
509
+ upnorm = norm_layer(outer_nc)
510
+
511
+ if outermost:
512
+ upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc,
513
+ kernel_size=4, stride=2,
514
+ padding=1)
515
+ down = [downconv]
516
+ up = [uprelu, upconv, nn.Tanh()]
517
+ model = down + [submodule] + up
518
+ elif innermost:
519
+ upconv = nn.ConvTranspose2d(inner_nc, outer_nc,
520
+ kernel_size=4, stride=2,
521
+ padding=1, bias=use_bias)
522
+ down = [downrelu, downconv]
523
+ up = [uprelu, upconv, upnorm]
524
+ model = down + up
525
+ else:
526
+ upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc,
527
+ kernel_size=4, stride=2,
528
+ padding=1, bias=use_bias)
529
+ down = [downrelu, downconv, downnorm]
530
+ up = [uprelu, upconv, upnorm]
531
+
532
+ if use_dropout:
533
+ model = down + [submodule] + up + [nn.Dropout(0.5)]
534
+ else:
535
+ model = down + [submodule] + up
536
+
537
+ self.model = nn.Sequential(*model)
538
+
539
+ def forward(self, x):
540
+ if self.outermost:
541
+ return self.model(x)
542
+ else: # add skip connections
543
+ return torch.cat([x, self.model(x)], 1)
544
+
545
+
546
+ class NLayerDiscriminator(nn.Module):
547
+ """Defines a PatchGAN discriminator"""
548
+
549
+ def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d):
550
+ """Construct a PatchGAN discriminator
551
+
552
+ Parameters:
553
+ input_nc (int) -- the number of channels in input images
554
+ ndf (int) -- the number of filters in the last conv layer
555
+ n_layers (int) -- the number of conv layers in the discriminator
556
+ norm_layer -- normalization layer
557
+ """
558
+ super(NLayerDiscriminator, self).__init__()
559
+ if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters
560
+ use_bias = norm_layer.func == nn.InstanceNorm2d
561
+ else:
562
+ use_bias = norm_layer == nn.InstanceNorm2d
563
+
564
+ kw = 4
565
+ padw = 1
566
+ sequence = [nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)]
567
+ nf_mult = 1
568
+ nf_mult_prev = 1
569
+ for n in range(1, n_layers): # gradually increase the number of filters
570
+ nf_mult_prev = nf_mult
571
+ nf_mult = min(2 ** n, 8)
572
+ sequence += [
573
+ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias),
574
+ norm_layer(ndf * nf_mult),
575
+ nn.LeakyReLU(0.2, True)
576
+ ]
577
+
578
+ nf_mult_prev = nf_mult
579
+ nf_mult = min(2 ** n_layers, 8)
580
+ sequence += [
581
+ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias),
582
+ norm_layer(ndf * nf_mult),
583
+ nn.LeakyReLU(0.2, True)
584
+ ]
585
+
586
+ sequence += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] # output 1 channel prediction map
587
+ self.model = nn.Sequential(*sequence)
588
+
589
+ def forward(self, input):
590
+ """Standard forward."""
591
+ return self.model(input)
592
+
593
+
594
+ class PixelDiscriminator(nn.Module):
595
+ """Defines a 1x1 PatchGAN discriminator (pixelGAN)"""
596
+
597
+ def __init__(self, input_nc, ndf=64, norm_layer=nn.BatchNorm2d):
598
+ """Construct a 1x1 PatchGAN discriminator
599
+
600
+ Parameters:
601
+ input_nc (int) -- the number of channels in input images
602
+ ndf (int) -- the number of filters in the last conv layer
603
+ norm_layer -- normalization layer
604
+ """
605
+ super(PixelDiscriminator, self).__init__()
606
+ if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters
607
+ use_bias = norm_layer.func == nn.InstanceNorm2d
608
+ else:
609
+ use_bias = norm_layer == nn.InstanceNorm2d
610
+
611
+ self.net = [
612
+ nn.Conv2d(input_nc, ndf, kernel_size=1, stride=1, padding=0),
613
+ nn.LeakyReLU(0.2, True),
614
+ nn.Conv2d(ndf, ndf * 2, kernel_size=1, stride=1, padding=0, bias=use_bias),
615
+ norm_layer(ndf * 2),
616
+ nn.LeakyReLU(0.2, True),
617
+ nn.Conv2d(ndf * 2, 1, kernel_size=1, stride=1, padding=0, bias=use_bias)]
618
+
619
+ self.net = nn.Sequential(*self.net)
620
+
621
+ def forward(self, input):
622
+ """Standard forward."""
623
+ return self.net(input)
controlnet_aux/src/controlnet_aux/leres/pix2pix/models/pix2pix4depth_model.py ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from .base_model import BaseModel
3
+ from . import networks
4
+
5
+
6
+ class Pix2Pix4DepthModel(BaseModel):
7
+ """ This class implements the pix2pix model, for learning a mapping from input images to output images given paired data.
8
+
9
+ The model training requires '--dataset_mode aligned' dataset.
10
+ By default, it uses a '--netG unet256' U-Net generator,
11
+ a '--netD basic' discriminator (PatchGAN),
12
+ and a '--gan_mode' vanilla GAN loss (the cross-entropy objective used in the orignal GAN paper).
13
+
14
+ pix2pix paper: https://arxiv.org/pdf/1611.07004.pdf
15
+ """
16
+ @staticmethod
17
+ def modify_commandline_options(parser, is_train=True):
18
+ """Add new dataset-specific options, and rewrite default values for existing options.
19
+
20
+ Parameters:
21
+ parser -- original option parser
22
+ is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options.
23
+
24
+ Returns:
25
+ the modified parser.
26
+
27
+ For pix2pix, we do not use image buffer
28
+ The training objective is: GAN Loss + lambda_L1 * ||G(A)-B||_1
29
+ By default, we use vanilla GAN loss, UNet with batchnorm, and aligned datasets.
30
+ """
31
+ # changing the default values to match the pix2pix paper (https://phillipi.github.io/pix2pix/)
32
+ parser.set_defaults(input_nc=2,output_nc=1,norm='none', netG='unet_1024', dataset_mode='depthmerge')
33
+ if is_train:
34
+ parser.set_defaults(pool_size=0, gan_mode='vanilla',)
35
+ parser.add_argument('--lambda_L1', type=float, default=1000, help='weight for L1 loss')
36
+ return parser
37
+
38
+ def __init__(self, opt):
39
+ """Initialize the pix2pix class.
40
+
41
+ Parameters:
42
+ opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions
43
+ """
44
+ BaseModel.__init__(self, opt)
45
+ # specify the training losses you want to print out. The training/test scripts will call <BaseModel.get_current_losses>
46
+
47
+ self.loss_names = ['G_GAN', 'G_L1', 'D_real', 'D_fake']
48
+ # self.loss_names = ['G_L1']
49
+
50
+ # specify the images you want to save/display. The training/test scripts will call <BaseModel.get_current_visuals>
51
+ if self.isTrain:
52
+ self.visual_names = ['outer','inner', 'fake_B', 'real_B']
53
+ else:
54
+ self.visual_names = ['fake_B']
55
+
56
+ # specify the models you want to save to the disk. The training/test scripts will call <BaseModel.save_networks> and <BaseModel.load_networks>
57
+ if self.isTrain:
58
+ self.model_names = ['G','D']
59
+ else: # during test time, only load G
60
+ self.model_names = ['G']
61
+
62
+ # define networks (both generator and discriminator)
63
+ self.netG = networks.define_G(opt.input_nc, opt.output_nc, 64, 'unet_1024', 'none',
64
+ False, 'normal', 0.02, self.gpu_ids)
65
+
66
+ if self.isTrain: # define a discriminator; conditional GANs need to take both input and output images; Therefore, #channels for D is input_nc + output_nc
67
+ self.netD = networks.define_D(opt.input_nc + opt.output_nc, opt.ndf, opt.netD,
68
+ opt.n_layers_D, opt.norm, opt.init_type, opt.init_gain, self.gpu_ids)
69
+
70
+ if self.isTrain:
71
+ # define loss functions
72
+ self.criterionGAN = networks.GANLoss(opt.gan_mode).to(self.device)
73
+ self.criterionL1 = torch.nn.L1Loss()
74
+ # initialize optimizers; schedulers will be automatically created by function <BaseModel.setup>.
75
+ self.optimizer_G = torch.optim.Adam(self.netG.parameters(), lr=1e-4, betas=(opt.beta1, 0.999))
76
+ self.optimizer_D = torch.optim.Adam(self.netD.parameters(), lr=2e-06, betas=(opt.beta1, 0.999))
77
+ self.optimizers.append(self.optimizer_G)
78
+ self.optimizers.append(self.optimizer_D)
79
+
80
+ def set_input_train(self, input):
81
+ self.outer = input['data_outer'].to(self.device)
82
+ self.outer = torch.nn.functional.interpolate(self.outer,(1024,1024),mode='bilinear',align_corners=False)
83
+
84
+ self.inner = input['data_inner'].to(self.device)
85
+ self.inner = torch.nn.functional.interpolate(self.inner,(1024,1024),mode='bilinear',align_corners=False)
86
+
87
+ self.image_paths = input['image_path']
88
+
89
+ if self.isTrain:
90
+ self.gtfake = input['data_gtfake'].to(self.device)
91
+ self.gtfake = torch.nn.functional.interpolate(self.gtfake, (1024, 1024), mode='bilinear', align_corners=False)
92
+ self.real_B = self.gtfake
93
+
94
+ self.real_A = torch.cat((self.outer, self.inner), 1)
95
+
96
+ def set_input(self, outer, inner):
97
+ inner = torch.from_numpy(inner).unsqueeze(0).unsqueeze(0)
98
+ outer = torch.from_numpy(outer).unsqueeze(0).unsqueeze(0)
99
+
100
+ inner = (inner - torch.min(inner))/(torch.max(inner)-torch.min(inner))
101
+ outer = (outer - torch.min(outer))/(torch.max(outer)-torch.min(outer))
102
+
103
+ inner = self.normalize(inner)
104
+ outer = self.normalize(outer)
105
+
106
+ self.real_A = torch.cat((outer, inner), 1).to(self.device)
107
+
108
+
109
+ def normalize(self, input):
110
+ input = input * 2
111
+ input = input - 1
112
+ return input
113
+
114
+ def forward(self):
115
+ """Run forward pass; called by both functions <optimize_parameters> and <test>."""
116
+ self.fake_B = self.netG(self.real_A) # G(A)
117
+
118
+ def backward_D(self):
119
+ """Calculate GAN loss for the discriminator"""
120
+ # Fake; stop backprop to the generator by detaching fake_B
121
+ fake_AB = torch.cat((self.real_A, self.fake_B), 1) # we use conditional GANs; we need to feed both input and output to the discriminator
122
+ pred_fake = self.netD(fake_AB.detach())
123
+ self.loss_D_fake = self.criterionGAN(pred_fake, False)
124
+ # Real
125
+ real_AB = torch.cat((self.real_A, self.real_B), 1)
126
+ pred_real = self.netD(real_AB)
127
+ self.loss_D_real = self.criterionGAN(pred_real, True)
128
+ # combine loss and calculate gradients
129
+ self.loss_D = (self.loss_D_fake + self.loss_D_real) * 0.5
130
+ self.loss_D.backward()
131
+
132
+ def backward_G(self):
133
+ """Calculate GAN and L1 loss for the generator"""
134
+ # First, G(A) should fake the discriminator
135
+ fake_AB = torch.cat((self.real_A, self.fake_B), 1)
136
+ pred_fake = self.netD(fake_AB)
137
+ self.loss_G_GAN = self.criterionGAN(pred_fake, True)
138
+ # Second, G(A) = B
139
+ self.loss_G_L1 = self.criterionL1(self.fake_B, self.real_B) * self.opt.lambda_L1
140
+ # combine loss and calculate gradients
141
+ self.loss_G = self.loss_G_L1 + self.loss_G_GAN
142
+ self.loss_G.backward()
143
+
144
+ def optimize_parameters(self):
145
+ self.forward() # compute fake images: G(A)
146
+ # update D
147
+ self.set_requires_grad(self.netD, True) # enable backprop for D
148
+ self.optimizer_D.zero_grad() # set D's gradients to zero
149
+ self.backward_D() # calculate gradients for D
150
+ self.optimizer_D.step() # update D's weights
151
+ # update G
152
+ self.set_requires_grad(self.netD, False) # D requires no gradients when optimizing G
153
+ self.optimizer_G.zero_grad() # set G's gradients to zero
154
+ self.backward_G() # calculate graidents for G
155
+ self.optimizer_G.step() # udpate G's weights
controlnet_aux/src/controlnet_aux/leres/pix2pix/options/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ """This package options includes option modules: training options, test options, and basic options (used in both training and test)."""
controlnet_aux/src/controlnet_aux/leres/pix2pix/options/base_options.py ADDED
@@ -0,0 +1,156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import os
3
+ from ...pix2pix.util import util
4
+ # import torch
5
+ from ...pix2pix import models
6
+ # import pix2pix.data
7
+ import numpy as np
8
+
9
+ class BaseOptions():
10
+ """This class defines options used during both training and test time.
11
+
12
+ It also implements several helper functions such as parsing, printing, and saving the options.
13
+ It also gathers additional options defined in <modify_commandline_options> functions in both dataset class and model class.
14
+ """
15
+
16
+ def __init__(self):
17
+ """Reset the class; indicates the class hasn't been initailized"""
18
+ self.initialized = False
19
+
20
+ def initialize(self, parser):
21
+ """Define the common options that are used in both training and test."""
22
+ # basic parameters
23
+ parser.add_argument('--dataroot', help='path to images (should have subfolders trainA, trainB, valA, valB, etc)')
24
+ parser.add_argument('--name', type=str, default='void', help='mahdi_unet_new, scaled_unet')
25
+ parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU')
26
+ parser.add_argument('--checkpoints_dir', type=str, default='./pix2pix/checkpoints', help='models are saved here')
27
+ # model parameters
28
+ parser.add_argument('--model', type=str, default='cycle_gan', help='chooses which model to use. [cycle_gan | pix2pix | test | colorization]')
29
+ parser.add_argument('--input_nc', type=int, default=2, help='# of input image channels: 3 for RGB and 1 for grayscale')
30
+ parser.add_argument('--output_nc', type=int, default=1, help='# of output image channels: 3 for RGB and 1 for grayscale')
31
+ parser.add_argument('--ngf', type=int, default=64, help='# of gen filters in the last conv layer')
32
+ parser.add_argument('--ndf', type=int, default=64, help='# of discrim filters in the first conv layer')
33
+ parser.add_argument('--netD', type=str, default='basic', help='specify discriminator architecture [basic | n_layers | pixel]. The basic model is a 70x70 PatchGAN. n_layers allows you to specify the layers in the discriminator')
34
+ parser.add_argument('--netG', type=str, default='resnet_9blocks', help='specify generator architecture [resnet_9blocks | resnet_6blocks | unet_256 | unet_128]')
35
+ parser.add_argument('--n_layers_D', type=int, default=3, help='only used if netD==n_layers')
36
+ parser.add_argument('--norm', type=str, default='instance', help='instance normalization or batch normalization [instance | batch | none]')
37
+ parser.add_argument('--init_type', type=str, default='normal', help='network initialization [normal | xavier | kaiming | orthogonal]')
38
+ parser.add_argument('--init_gain', type=float, default=0.02, help='scaling factor for normal, xavier and orthogonal.')
39
+ parser.add_argument('--no_dropout', action='store_true', help='no dropout for the generator')
40
+ # dataset parameters
41
+ parser.add_argument('--dataset_mode', type=str, default='unaligned', help='chooses how datasets are loaded. [unaligned | aligned | single | colorization]')
42
+ parser.add_argument('--direction', type=str, default='AtoB', help='AtoB or BtoA')
43
+ parser.add_argument('--serial_batches', action='store_true', help='if true, takes images in order to make batches, otherwise takes them randomly')
44
+ parser.add_argument('--num_threads', default=4, type=int, help='# threads for loading data')
45
+ parser.add_argument('--batch_size', type=int, default=1, help='input batch size')
46
+ parser.add_argument('--load_size', type=int, default=672, help='scale images to this size')
47
+ parser.add_argument('--crop_size', type=int, default=672, help='then crop to this size')
48
+ parser.add_argument('--max_dataset_size', type=int, default=10000, help='Maximum number of samples allowed per dataset. If the dataset directory contains more than max_dataset_size, only a subset is loaded.')
49
+ parser.add_argument('--preprocess', type=str, default='resize_and_crop', help='scaling and cropping of images at load time [resize_and_crop | crop | scale_width | scale_width_and_crop | none]')
50
+ parser.add_argument('--no_flip', action='store_true', help='if specified, do not flip the images for data augmentation')
51
+ parser.add_argument('--display_winsize', type=int, default=256, help='display window size for both visdom and HTML')
52
+ # additional parameters
53
+ parser.add_argument('--epoch', type=str, default='latest', help='which epoch to load? set to latest to use latest cached model')
54
+ parser.add_argument('--load_iter', type=int, default='0', help='which iteration to load? if load_iter > 0, the code will load models by iter_[load_iter]; otherwise, the code will load models by [epoch]')
55
+ parser.add_argument('--verbose', action='store_true', help='if specified, print more debugging information')
56
+ parser.add_argument('--suffix', default='', type=str, help='customized suffix: opt.name = opt.name + suffix: e.g., {model}_{netG}_size{load_size}')
57
+
58
+ parser.add_argument('--data_dir', type=str, required=False,
59
+ help='input files directory images can be .png .jpg .tiff')
60
+ parser.add_argument('--output_dir', type=str, required=False,
61
+ help='result dir. result depth will be png. vides are JMPG as avi')
62
+ parser.add_argument('--savecrops', type=int, required=False)
63
+ parser.add_argument('--savewholeest', type=int, required=False)
64
+ parser.add_argument('--output_resolution', type=int, required=False,
65
+ help='0 for no restriction 1 for resize to input size')
66
+ parser.add_argument('--net_receptive_field_size', type=int, required=False)
67
+ parser.add_argument('--pix2pixsize', type=int, required=False)
68
+ parser.add_argument('--generatevideo', type=int, required=False)
69
+ parser.add_argument('--depthNet', type=int, required=False, help='0: midas 1:strurturedRL')
70
+ parser.add_argument('--R0', action='store_true')
71
+ parser.add_argument('--R20', action='store_true')
72
+ parser.add_argument('--Final', action='store_true')
73
+ parser.add_argument('--colorize_results', action='store_true')
74
+ parser.add_argument('--max_res', type=float, default=np.inf)
75
+
76
+ self.initialized = True
77
+ return parser
78
+
79
+ def gather_options(self):
80
+ """Initialize our parser with basic options(only once).
81
+ Add additional model-specific and dataset-specific options.
82
+ These options are defined in the <modify_commandline_options> function
83
+ in model and dataset classes.
84
+ """
85
+ if not self.initialized: # check if it has been initialized
86
+ parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
87
+ parser = self.initialize(parser)
88
+
89
+ # get the basic options
90
+ opt, _ = parser.parse_known_args()
91
+
92
+ # modify model-related parser options
93
+ model_name = opt.model
94
+ model_option_setter = models.get_option_setter(model_name)
95
+ parser = model_option_setter(parser, self.isTrain)
96
+ opt, _ = parser.parse_known_args() # parse again with new defaults
97
+
98
+ # modify dataset-related parser options
99
+ # dataset_name = opt.dataset_mode
100
+ # dataset_option_setter = pix2pix.data.get_option_setter(dataset_name)
101
+ # parser = dataset_option_setter(parser, self.isTrain)
102
+
103
+ # save and return the parser
104
+ self.parser = parser
105
+ #return parser.parse_args() #EVIL
106
+ return opt
107
+
108
+ def print_options(self, opt):
109
+ """Print and save options
110
+
111
+ It will print both current options and default values(if different).
112
+ It will save options into a text file / [checkpoints_dir] / opt.txt
113
+ """
114
+ message = ''
115
+ message += '----------------- Options ---------------\n'
116
+ for k, v in sorted(vars(opt).items()):
117
+ comment = ''
118
+ default = self.parser.get_default(k)
119
+ if v != default:
120
+ comment = '\t[default: %s]' % str(default)
121
+ message += '{:>25}: {:<30}{}\n'.format(str(k), str(v), comment)
122
+ message += '----------------- End -------------------'
123
+ print(message)
124
+
125
+ # save to the disk
126
+ expr_dir = os.path.join(opt.checkpoints_dir, opt.name)
127
+ util.mkdirs(expr_dir)
128
+ file_name = os.path.join(expr_dir, '{}_opt.txt'.format(opt.phase))
129
+ with open(file_name, 'wt') as opt_file:
130
+ opt_file.write(message)
131
+ opt_file.write('\n')
132
+
133
+ def parse(self):
134
+ """Parse our options, create checkpoints directory suffix, and set up gpu device."""
135
+ opt = self.gather_options()
136
+ opt.isTrain = self.isTrain # train or test
137
+
138
+ # process opt.suffix
139
+ if opt.suffix:
140
+ suffix = ('_' + opt.suffix.format(**vars(opt))) if opt.suffix != '' else ''
141
+ opt.name = opt.name + suffix
142
+
143
+ #self.print_options(opt)
144
+
145
+ # set gpu ids
146
+ str_ids = opt.gpu_ids.split(',')
147
+ opt.gpu_ids = []
148
+ for str_id in str_ids:
149
+ id = int(str_id)
150
+ if id >= 0:
151
+ opt.gpu_ids.append(id)
152
+ #if len(opt.gpu_ids) > 0:
153
+ # torch.cuda.set_device(opt.gpu_ids[0])
154
+
155
+ self.opt = opt
156
+ return self.opt
controlnet_aux/src/controlnet_aux/leres/pix2pix/options/test_options.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .base_options import BaseOptions
2
+
3
+
4
+ class TestOptions(BaseOptions):
5
+ """This class includes test options.
6
+
7
+ It also includes shared options defined in BaseOptions.
8
+ """
9
+
10
+ def initialize(self, parser):
11
+ parser = BaseOptions.initialize(self, parser) # define shared options
12
+ parser.add_argument('--aspect_ratio', type=float, default=1.0, help='aspect ratio of result images')
13
+ parser.add_argument('--phase', type=str, default='test', help='train, val, test, etc')
14
+ # Dropout and Batchnorm has different behavioir during training and test.
15
+ parser.add_argument('--eval', action='store_true', help='use eval mode during test time.')
16
+ parser.add_argument('--num_test', type=int, default=50, help='how many test images to run')
17
+ # rewrite devalue values
18
+ parser.set_defaults(model='pix2pix4depth')
19
+ # To avoid cropping, the load_size should be the same as crop_size
20
+ parser.set_defaults(load_size=parser.get_default('crop_size'))
21
+ self.isTrain = False
22
+ return parser
controlnet_aux/src/controlnet_aux/leres/pix2pix/util/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ """This package includes a miscellaneous collection of useful helper functions."""