kevinwang676's picture
Duplicate from zlc99/M4Singer
26925fd
raw
history blame
6.15 kB
import matplotlib
matplotlib.use('Agg')
import torch
import numpy as np
import os
from tasks.base_task import BaseDataset
from tasks.tts.fs2 import FastSpeech2Task
from modules.fastspeech.pe import PitchExtractor
import utils
from utils.indexed_datasets import IndexedDataset
from utils.hparams import hparams
from utils.plot import f0_to_figure
from utils.pitch_utils import norm_interp_f0, denorm_f0
class PeDataset(BaseDataset):
def __init__(self, prefix, shuffle=False):
super().__init__(shuffle)
self.data_dir = hparams['binary_data_dir']
self.prefix = prefix
self.hparams = hparams
self.sizes = np.load(f'{self.data_dir}/{self.prefix}_lengths.npy')
self.indexed_ds = None
# pitch stats
f0_stats_fn = f'{self.data_dir}/train_f0s_mean_std.npy'
if os.path.exists(f0_stats_fn):
hparams['f0_mean'], hparams['f0_std'] = self.f0_mean, self.f0_std = np.load(f0_stats_fn)
hparams['f0_mean'] = float(hparams['f0_mean'])
hparams['f0_std'] = float(hparams['f0_std'])
else:
hparams['f0_mean'], hparams['f0_std'] = self.f0_mean, self.f0_std = None, None
if prefix == 'test':
if hparams['num_test_samples'] > 0:
self.avail_idxs = list(range(hparams['num_test_samples'])) + hparams['test_ids']
self.sizes = [self.sizes[i] for i in self.avail_idxs]
def _get_item(self, index):
if hasattr(self, 'avail_idxs') and self.avail_idxs is not None:
index = self.avail_idxs[index]
if self.indexed_ds is None:
self.indexed_ds = IndexedDataset(f'{self.data_dir}/{self.prefix}')
return self.indexed_ds[index]
def __getitem__(self, index):
hparams = self.hparams
item = self._get_item(index)
max_frames = hparams['max_frames']
spec = torch.Tensor(item['mel'])[:max_frames]
# mel2ph = torch.LongTensor(item['mel2ph'])[:max_frames] if 'mel2ph' in item else None
f0, uv = norm_interp_f0(item["f0"][:max_frames], hparams)
pitch = torch.LongTensor(item.get("pitch"))[:max_frames]
# print(item.keys(), item['mel'].shape, spec.shape)
sample = {
"id": index,
"item_name": item['item_name'],
"text": item['txt'],
"mel": spec,
"pitch": pitch,
"f0": f0,
"uv": uv,
# "mel2ph": mel2ph,
# "mel_nonpadding": spec.abs().sum(-1) > 0,
}
return sample
def collater(self, samples):
if len(samples) == 0:
return {}
id = torch.LongTensor([s['id'] for s in samples])
item_names = [s['item_name'] for s in samples]
text = [s['text'] for s in samples]
f0 = utils.collate_1d([s['f0'] for s in samples], 0.0)
pitch = utils.collate_1d([s['pitch'] for s in samples])
uv = utils.collate_1d([s['uv'] for s in samples])
mels = utils.collate_2d([s['mel'] for s in samples], 0.0)
mel_lengths = torch.LongTensor([s['mel'].shape[0] for s in samples])
# mel2ph = utils.collate_1d([s['mel2ph'] for s in samples], 0.0) \
# if samples[0]['mel2ph'] is not None else None
# mel_nonpaddings = utils.collate_1d([s['mel_nonpadding'].float() for s in samples], 0.0)
batch = {
'id': id,
'item_name': item_names,
'nsamples': len(samples),
'text': text,
'mels': mels,
'mel_lengths': mel_lengths,
'pitch': pitch,
# 'mel2ph': mel2ph,
# 'mel_nonpaddings': mel_nonpaddings,
'f0': f0,
'uv': uv,
}
return batch
class PitchExtractionTask(FastSpeech2Task):
def __init__(self):
super().__init__()
self.dataset_cls = PeDataset
def build_tts_model(self):
self.model = PitchExtractor(conv_layers=hparams['pitch_extractor_conv_layers'])
# def build_scheduler(self, optimizer):
# return torch.optim.lr_scheduler.StepLR(optimizer, hparams['decay_steps'], gamma=0.5)
def _training_step(self, sample, batch_idx, _):
loss_output = self.run_model(self.model, sample)
total_loss = sum([v for v in loss_output.values() if isinstance(v, torch.Tensor) and v.requires_grad])
loss_output['batch_size'] = sample['mels'].size()[0]
return total_loss, loss_output
def validation_step(self, sample, batch_idx):
outputs = {}
outputs['losses'] = {}
outputs['losses'], model_out = self.run_model(self.model, sample, return_output=True, infer=True)
outputs['total_loss'] = sum(outputs['losses'].values())
outputs['nsamples'] = sample['nsamples']
outputs = utils.tensors_to_scalars(outputs)
if batch_idx < hparams['num_valid_plots']:
self.plot_pitch(batch_idx, model_out, sample)
return outputs
def run_model(self, model, sample, return_output=False, infer=False):
f0 = sample['f0']
uv = sample['uv']
output = model(sample['mels'])
losses = {}
self.add_pitch_loss(output, sample, losses)
if not return_output:
return losses
else:
return losses, output
def plot_pitch(self, batch_idx, model_out, sample):
gt_f0 = denorm_f0(sample['f0'], sample['uv'], hparams)
self.logger.experiment.add_figure(
f'f0_{batch_idx}',
f0_to_figure(gt_f0[0], None, model_out['f0_denorm_pred'][0]),
self.global_step)
def add_pitch_loss(self, output, sample, losses):
# mel2ph = sample['mel2ph'] # [B, T_s]
mel = sample['mels']
f0 = sample['f0']
uv = sample['uv']
# nonpadding = (mel2ph != 0).float() if hparams['pitch_type'] == 'frame' \
# else (sample['txt_tokens'] != 0).float()
nonpadding = (mel.abs().sum(-1) > 0).float() # sample['mel_nonpaddings']
# print(nonpadding[0][-8:], nonpadding.shape)
self.add_f0_loss(output['pitch_pred'], f0, uv, losses, nonpadding=nonpadding)