M4Singer / app.py
kevinwang676's picture
Update app.py
5e7e349 verified
raw
history blame
6.74 kB
import importlib
import re
import gradio as gr
import yaml
from gradio.components import Textbox, Dropdown
from inference.m4singer.base_svs_infer import BaseSVSInfer
from utils.hparams import set_hparams
from utils.hparams import hparams as hp
import numpy as np
from inference.m4singer.gradio.share_btn import community_icon_html, loading_icon_html, share_js
import spaces
class GradioInfer:
def __init__(self, exp_name, inference_cls, title, description, article, example_inputs):
self.exp_name = exp_name
self.title = title
self.description = description
self.article = article
self.example_inputs = example_inputs
pkg = ".".join(inference_cls.split(".")[:-1])
cls_name = inference_cls.split(".")[-1]
self.inference_cls = getattr(importlib.import_module(pkg), cls_name)
@spaces.GPU(duration=180)
def greet(self, singer, text, notes, notes_duration):
PUNCS = '。?;:'
sents = re.split(rf'([{PUNCS}])', text.replace('\n', ','))
sents_notes = re.split(rf'([{PUNCS}])', notes.replace('\n', ','))
sents_notes_dur = re.split(rf'([{PUNCS}])', notes_duration.replace('\n', ','))
if sents[-1] not in list(PUNCS):
sents = sents + ['']
sents_notes = sents_notes + ['']
sents_notes_dur = sents_notes_dur + ['']
audio_outs = []
s, n, n_dur = "", "", ""
for i in range(0, len(sents), 2):
if len(sents[i]) > 0:
s += sents[i] + sents[i + 1]
n += sents_notes[i] + sents_notes[i+1]
n_dur += sents_notes_dur[i] + sents_notes_dur[i+1]
if len(s) >= 400 or (i >= len(sents) - 2 and len(s) > 0):
audio_out = self.infer_ins.infer_once({
'spk_name': singer,
'text': s,
'notes': n,
'notes_duration': n_dur,
})
audio_out = audio_out * 32767
audio_out = audio_out.astype(np.int16)
audio_outs.append(audio_out)
audio_outs.append(np.zeros(int(hp['audio_sample_rate'] * 0.3)).astype(np.int16))
s = ""
n = ""
audio_outs = np.concatenate(audio_outs)
return (hp['audio_sample_rate'], audio_outs), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
def run(self):
set_hparams(config=f'checkpoints/{self.exp_name}/config.yaml', exp_name=self.exp_name, print_hparams=False)
infer_cls = self.inference_cls
self.infer_ins: BaseSVSInfer = infer_cls(hp)
example_inputs = self.example_inputs
for i in range(len(example_inputs)):
singer, text, notes, notes_dur = example_inputs[i].split('<sep>')
example_inputs[i] = [singer, text, notes, notes_dur]
singerList = \
[
'Tenor-1', 'Tenor-2', 'Tenor-3', 'Tenor-4', 'Tenor-5', 'Tenor-6', 'Tenor-7',
'Alto-1', 'Alto-2', 'Alto-3', 'Alto-4', 'Alto-5', 'Alto-6', 'Alto-7',
'Soprano-1', 'Soprano-2', 'Soprano-3',
'Bass-1', 'Bass-2', 'Bass-3',
]
css = """
#share-btn-container {
display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
}
#share-btn {
all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;right:0;
}
#share-btn * {
all: unset;
}
#share-btn-container div:nth-child(-n+2){
width: auto !important;
min-height: 0px !important;
}
#share-btn-container .wrap {
display: none !important;
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML("""<div style="text-align: center; margin: 0 auto;">
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
"
>
<h1 style="font-weight: 900; margin-bottom: 10px; margin-top: 14px;">
M4Singer
</h1>
</div>
</div>
"""
)
gr.Markdown(self.description)
with gr.Row():
with gr.Column():
singer_l = Dropdown(choices=singerList, value=example_inputs[0][0], label="SingerID", elem_id="inp_singer")
inp_text = Textbox(lines=2, placeholder=None, value=example_inputs[0][1], label="input text", elem_id="inp_text")
inp_note = Textbox(lines=2, placeholder=None, value=example_inputs[0][2], label="input note", elem_id="inp_note")
inp_duration = Textbox(lines=2, placeholder=None, value=example_inputs[0][3], label="input duration", elem_id="inp_duration")
generate = gr.Button("Generate Singing Voice from Musical Score")
with gr.Column():
singing_output = gr.Audio(label="Result", type="numpy", elem_id="music-output")
with gr.Group(elem_id="share-btn-container"):
community_icon = gr.HTML(community_icon_html, visible=False)
loading_icon = gr.HTML(loading_icon_html, visible=False)
share_button = gr.Button("滔滔AI,为爱滔滔💕", elem_id="share-btn", visible=False)
gr.Examples(examples=self.example_inputs,
inputs=[singer_l, inp_text, inp_note, inp_duration],
outputs=[singing_output, share_button, community_icon, loading_icon],
fn=self.greet,
cache_examples=True)
gr.Markdown(self.article)
generate.click(self.greet,
inputs=[singer_l, inp_text, inp_note, inp_duration],
outputs=[singing_output, share_button, community_icon, loading_icon],)
demo.queue().launch(show_error=True)
if __name__ == '__main__':
gradio_config = yaml.safe_load(open('inference/m4singer/gradio/gradio_settings.yaml'))
g = GradioInfer(**gradio_config)
g.run()