Spaces:
Running
Running
kevinwang676
commited on
Create inference_webui.py
Browse files- GPT_SoVITS/inference_webui.py +762 -0
GPT_SoVITS/inference_webui.py
ADDED
@@ -0,0 +1,762 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
按中英混合识别
|
3 |
+
按日英混合识别
|
4 |
+
多语种启动切分识别语种
|
5 |
+
全部按中文识别
|
6 |
+
全部按英文识别
|
7 |
+
全部按日文识别
|
8 |
+
'''
|
9 |
+
import logging
|
10 |
+
import traceback
|
11 |
+
|
12 |
+
logging.getLogger("markdown_it").setLevel(logging.ERROR)
|
13 |
+
logging.getLogger("urllib3").setLevel(logging.ERROR)
|
14 |
+
logging.getLogger("httpcore").setLevel(logging.ERROR)
|
15 |
+
logging.getLogger("httpx").setLevel(logging.ERROR)
|
16 |
+
logging.getLogger("asyncio").setLevel(logging.ERROR)
|
17 |
+
logging.getLogger("charset_normalizer").setLevel(logging.ERROR)
|
18 |
+
logging.getLogger("torchaudio._extension").setLevel(logging.ERROR)
|
19 |
+
logging.getLogger("multipart.multipart").setLevel(logging.ERROR)
|
20 |
+
import LangSegment, os, re, sys, json
|
21 |
+
import pdb
|
22 |
+
import torch
|
23 |
+
|
24 |
+
version=os.environ.get("version","v2")
|
25 |
+
pretrained_sovits_name=["GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth", "GPT_SoVITS/pretrained_models/s2G488k.pth"]
|
26 |
+
pretrained_gpt_name=["GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt", "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"]
|
27 |
+
|
28 |
+
_ =[[],[]]
|
29 |
+
for i in range(2):
|
30 |
+
if os.path.exists(pretrained_gpt_name[i]):
|
31 |
+
_[0].append(pretrained_gpt_name[i])
|
32 |
+
if os.path.exists(pretrained_sovits_name[i]):
|
33 |
+
_[-1].append(pretrained_sovits_name[i])
|
34 |
+
pretrained_gpt_name,pretrained_sovits_name = _
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
if os.path.exists(f"./weight.json"):
|
39 |
+
pass
|
40 |
+
else:
|
41 |
+
with open(f"./weight.json", 'w', encoding="utf-8") as file:json.dump({'GPT':{},'SoVITS':{}},file)
|
42 |
+
|
43 |
+
with open(f"./weight.json", 'r', encoding="utf-8") as file:
|
44 |
+
weight_data = file.read()
|
45 |
+
weight_data=json.loads(weight_data)
|
46 |
+
gpt_path = os.environ.get(
|
47 |
+
"gpt_path", weight_data.get('GPT',{}).get(version,pretrained_gpt_name))
|
48 |
+
sovits_path = os.environ.get(
|
49 |
+
"sovits_path", weight_data.get('SoVITS',{}).get(version,pretrained_sovits_name))
|
50 |
+
if isinstance(gpt_path,list):
|
51 |
+
gpt_path = gpt_path[0]
|
52 |
+
if isinstance(sovits_path,list):
|
53 |
+
sovits_path = sovits_path[0]
|
54 |
+
|
55 |
+
# gpt_path = os.environ.get(
|
56 |
+
# "gpt_path", pretrained_gpt_name
|
57 |
+
# )
|
58 |
+
# sovits_path = os.environ.get("sovits_path", pretrained_sovits_name)
|
59 |
+
cnhubert_base_path = os.environ.get(
|
60 |
+
"cnhubert_base_path", "GPT_SoVITS/pretrained_models/chinese-hubert-base"
|
61 |
+
)
|
62 |
+
bert_path = os.environ.get(
|
63 |
+
"bert_path", "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large"
|
64 |
+
)
|
65 |
+
infer_ttswebui = os.environ.get("infer_ttswebui", 9872)
|
66 |
+
infer_ttswebui = int(infer_ttswebui)
|
67 |
+
is_share = os.environ.get("is_share", "False")
|
68 |
+
is_share = eval(is_share)
|
69 |
+
if "_CUDA_VISIBLE_DEVICES" in os.environ:
|
70 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
|
71 |
+
is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available()
|
72 |
+
punctuation = set(['!', '?', '…', ',', '.', '-'," "])
|
73 |
+
import gradio as gr
|
74 |
+
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
75 |
+
import numpy as np
|
76 |
+
import librosa
|
77 |
+
from feature_extractor import cnhubert
|
78 |
+
|
79 |
+
cnhubert.cnhubert_base_path = cnhubert_base_path
|
80 |
+
|
81 |
+
from module.models import SynthesizerTrn
|
82 |
+
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
|
83 |
+
from text import cleaned_text_to_sequence
|
84 |
+
from text.cleaner import clean_text
|
85 |
+
from time import time as ttime
|
86 |
+
from module.mel_processing import spectrogram_torch
|
87 |
+
from tools.my_utils import load_audio
|
88 |
+
from tools.i18n.i18n import I18nAuto, scan_language_list
|
89 |
+
|
90 |
+
language=os.environ.get("language","Auto")
|
91 |
+
language=sys.argv[-1] if sys.argv[-1] in scan_language_list() else language
|
92 |
+
i18n = I18nAuto(language=language)
|
93 |
+
|
94 |
+
# os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 确保直接启动推理UI时也能够设置。
|
95 |
+
|
96 |
+
if torch.cuda.is_available():
|
97 |
+
device = "cuda"
|
98 |
+
else:
|
99 |
+
device = "cpu"
|
100 |
+
|
101 |
+
dict_language_v1 = {
|
102 |
+
i18n("中文"): "all_zh",#全部按中文识别
|
103 |
+
i18n("英文"): "en",#全部按英文识别#######不变
|
104 |
+
i18n("日文"): "all_ja",#全部按日文识别
|
105 |
+
i18n("中英混合"): "zh",#按中英混合识别####不变
|
106 |
+
i18n("日英混合"): "ja",#按日英混合识别####不变
|
107 |
+
i18n("多语种混合"): "auto",#多语种启动切分识别语种
|
108 |
+
}
|
109 |
+
dict_language_v2 = {
|
110 |
+
i18n("中文"): "all_zh",#全部按中文识别
|
111 |
+
i18n("英文"): "en",#全部按英文识别#######不变
|
112 |
+
i18n("日文"): "all_ja",#全部按日文识别
|
113 |
+
i18n("粤语"): "all_yue",#全部按中文识别
|
114 |
+
i18n("韩文"): "all_ko",#全部按韩文识别
|
115 |
+
i18n("中英混合"): "zh",#按中英混合识别####不变
|
116 |
+
i18n("日英混合"): "ja",#按日英混合识别####不变
|
117 |
+
i18n("粤英混合"): "yue",#按粤英混合识别####不变
|
118 |
+
i18n("韩英混合"): "ko",#按韩英混合识别####不变
|
119 |
+
i18n("多语种混合"): "auto",#多语种启动切分识别语种
|
120 |
+
i18n("多语种混合(粤语)"): "auto_yue",#多语种启动切分识别语种
|
121 |
+
}
|
122 |
+
dict_language = dict_language_v1 if version =='v1' else dict_language_v2
|
123 |
+
|
124 |
+
tokenizer = AutoTokenizer.from_pretrained(bert_path)
|
125 |
+
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path)
|
126 |
+
if is_half == True:
|
127 |
+
bert_model = bert_model.half().to(device)
|
128 |
+
else:
|
129 |
+
bert_model = bert_model.to(device)
|
130 |
+
|
131 |
+
|
132 |
+
def get_bert_feature(text, word2ph):
|
133 |
+
with torch.no_grad():
|
134 |
+
inputs = tokenizer(text, return_tensors="pt")
|
135 |
+
for i in inputs:
|
136 |
+
inputs[i] = inputs[i].to(device)
|
137 |
+
res = bert_model(**inputs, output_hidden_states=True)
|
138 |
+
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
|
139 |
+
assert len(word2ph) == len(text)
|
140 |
+
phone_level_feature = []
|
141 |
+
for i in range(len(word2ph)):
|
142 |
+
repeat_feature = res[i].repeat(word2ph[i], 1)
|
143 |
+
phone_level_feature.append(repeat_feature)
|
144 |
+
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
145 |
+
return phone_level_feature.T
|
146 |
+
|
147 |
+
|
148 |
+
class DictToAttrRecursive(dict):
|
149 |
+
def __init__(self, input_dict):
|
150 |
+
super().__init__(input_dict)
|
151 |
+
for key, value in input_dict.items():
|
152 |
+
if isinstance(value, dict):
|
153 |
+
value = DictToAttrRecursive(value)
|
154 |
+
self[key] = value
|
155 |
+
setattr(self, key, value)
|
156 |
+
|
157 |
+
def __getattr__(self, item):
|
158 |
+
try:
|
159 |
+
return self[item]
|
160 |
+
except KeyError:
|
161 |
+
raise AttributeError(f"Attribute {item} not found")
|
162 |
+
|
163 |
+
def __setattr__(self, key, value):
|
164 |
+
if isinstance(value, dict):
|
165 |
+
value = DictToAttrRecursive(value)
|
166 |
+
super(DictToAttrRecursive, self).__setitem__(key, value)
|
167 |
+
super().__setattr__(key, value)
|
168 |
+
|
169 |
+
def __delattr__(self, item):
|
170 |
+
try:
|
171 |
+
del self[item]
|
172 |
+
except KeyError:
|
173 |
+
raise AttributeError(f"Attribute {item} not found")
|
174 |
+
|
175 |
+
|
176 |
+
ssl_model = cnhubert.get_model()
|
177 |
+
if is_half == True:
|
178 |
+
ssl_model = ssl_model.half().to(device)
|
179 |
+
else:
|
180 |
+
ssl_model = ssl_model.to(device)
|
181 |
+
|
182 |
+
|
183 |
+
def change_sovits_weights(sovits_path,prompt_language=None,text_language=None):
|
184 |
+
global vq_model, hps, version, dict_language
|
185 |
+
dict_s2 = torch.load(sovits_path, map_location="cpu")
|
186 |
+
hps = dict_s2["config"]
|
187 |
+
hps = DictToAttrRecursive(hps)
|
188 |
+
hps.model.semantic_frame_rate = "25hz"
|
189 |
+
if dict_s2['weight']['enc_p.text_embedding.weight'].shape[0] == 322:
|
190 |
+
hps.model.version = "v1"
|
191 |
+
else:
|
192 |
+
hps.model.version = "v2"
|
193 |
+
version = hps.model.version
|
194 |
+
# print("sovits版本:",hps.model.version)
|
195 |
+
vq_model = SynthesizerTrn(
|
196 |
+
hps.data.filter_length // 2 + 1,
|
197 |
+
hps.train.segment_size // hps.data.hop_length,
|
198 |
+
n_speakers=hps.data.n_speakers,
|
199 |
+
**hps.model
|
200 |
+
)
|
201 |
+
if ("pretrained" not in sovits_path):
|
202 |
+
del vq_model.enc_q
|
203 |
+
if is_half == True:
|
204 |
+
vq_model = vq_model.half().to(device)
|
205 |
+
else:
|
206 |
+
vq_model = vq_model.to(device)
|
207 |
+
vq_model.eval()
|
208 |
+
print(vq_model.load_state_dict(dict_s2["weight"], strict=False))
|
209 |
+
dict_language = dict_language_v1 if version =='v1' else dict_language_v2
|
210 |
+
with open("./weight.json")as f:
|
211 |
+
data=f.read()
|
212 |
+
data=json.loads(data)
|
213 |
+
data["SoVITS"][version]=sovits_path
|
214 |
+
with open("./weight.json","w")as f:f.write(json.dumps(data))
|
215 |
+
if prompt_language is not None and text_language is not None:
|
216 |
+
if prompt_language in list(dict_language.keys()):
|
217 |
+
prompt_text_update, prompt_language_update = {'__type__':'update'}, {'__type__':'update', 'value':prompt_language}
|
218 |
+
else:
|
219 |
+
prompt_text_update = {'__type__':'update', 'value':''}
|
220 |
+
prompt_language_update = {'__type__':'update', 'value':i18n("中文")}
|
221 |
+
if text_language in list(dict_language.keys()):
|
222 |
+
text_update, text_language_update = {'__type__':'update'}, {'__type__':'update', 'value':text_language}
|
223 |
+
else:
|
224 |
+
text_update = {'__type__':'update', 'value':''}
|
225 |
+
text_language_update = {'__type__':'update', 'value':i18n("中文")}
|
226 |
+
return {'__type__':'update', 'choices':list(dict_language.keys())}, {'__type__':'update', 'choices':list(dict_language.keys())}, prompt_text_update, prompt_language_update, text_update, text_language_update
|
227 |
+
|
228 |
+
|
229 |
+
|
230 |
+
change_sovits_weights(sovits_path)
|
231 |
+
|
232 |
+
|
233 |
+
def change_gpt_weights(gpt_path):
|
234 |
+
global hz, max_sec, t2s_model, config
|
235 |
+
hz = 50
|
236 |
+
dict_s1 = torch.load(gpt_path, map_location="cpu")
|
237 |
+
config = dict_s1["config"]
|
238 |
+
max_sec = config["data"]["max_sec"]
|
239 |
+
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False)
|
240 |
+
t2s_model.load_state_dict(dict_s1["weight"])
|
241 |
+
if is_half == True:
|
242 |
+
t2s_model = t2s_model.half()
|
243 |
+
t2s_model = t2s_model.to(device)
|
244 |
+
t2s_model.eval()
|
245 |
+
total = sum([param.nelement() for param in t2s_model.parameters()])
|
246 |
+
print("Number of parameter: %.2fM" % (total / 1e6))
|
247 |
+
with open("./weight.json")as f:
|
248 |
+
data=f.read()
|
249 |
+
data=json.loads(data)
|
250 |
+
data["GPT"][version]=gpt_path
|
251 |
+
with open("./weight.json","w")as f:f.write(json.dumps(data))
|
252 |
+
|
253 |
+
|
254 |
+
change_gpt_weights(gpt_path)
|
255 |
+
|
256 |
+
|
257 |
+
def get_spepc(hps, filename):
|
258 |
+
audio = load_audio(filename, int(hps.data.sampling_rate))
|
259 |
+
audio = torch.FloatTensor(audio)
|
260 |
+
maxx=audio.abs().max()
|
261 |
+
if(maxx>1):audio/=min(2,maxx)
|
262 |
+
audio_norm = audio
|
263 |
+
audio_norm = audio_norm.unsqueeze(0)
|
264 |
+
spec = spectrogram_torch(
|
265 |
+
audio_norm,
|
266 |
+
hps.data.filter_length,
|
267 |
+
hps.data.sampling_rate,
|
268 |
+
hps.data.hop_length,
|
269 |
+
hps.data.win_length,
|
270 |
+
center=False,
|
271 |
+
)
|
272 |
+
return spec
|
273 |
+
|
274 |
+
def clean_text_inf(text, language, version):
|
275 |
+
phones, word2ph, norm_text = clean_text(text, language, version)
|
276 |
+
phones = cleaned_text_to_sequence(phones, version)
|
277 |
+
return phones, word2ph, norm_text
|
278 |
+
|
279 |
+
dtype=torch.float16 if is_half == True else torch.float32
|
280 |
+
def get_bert_inf(phones, word2ph, norm_text, language):
|
281 |
+
language=language.replace("all_","")
|
282 |
+
if language == "zh":
|
283 |
+
bert = get_bert_feature(norm_text, word2ph).to(device)#.to(dtype)
|
284 |
+
else:
|
285 |
+
bert = torch.zeros(
|
286 |
+
(1024, len(phones)),
|
287 |
+
dtype=torch.float16 if is_half == True else torch.float32,
|
288 |
+
).to(device)
|
289 |
+
|
290 |
+
return bert
|
291 |
+
|
292 |
+
|
293 |
+
splits = {",", "。", "?", "!", ",", ".", "?", "!", "~", ":", ":", "—", "…", }
|
294 |
+
|
295 |
+
|
296 |
+
def get_first(text):
|
297 |
+
pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]"
|
298 |
+
text = re.split(pattern, text)[0].strip()
|
299 |
+
return text
|
300 |
+
|
301 |
+
from text import chinese
|
302 |
+
def get_phones_and_bert(text,language,version):
|
303 |
+
if language in {"en", "all_zh", "all_ja", "all_ko", "all_yue"}:
|
304 |
+
language = language.replace("all_","")
|
305 |
+
if language == "en":
|
306 |
+
LangSegment.setfilters(["en"])
|
307 |
+
formattext = " ".join(tmp["text"] for tmp in LangSegment.getTexts(text))
|
308 |
+
else:
|
309 |
+
# 因无法区别中日韩文汉字,以用户输入为准
|
310 |
+
formattext = text
|
311 |
+
while " " in formattext:
|
312 |
+
formattext = formattext.replace(" ", " ")
|
313 |
+
if language == "zh":
|
314 |
+
if re.search(r'[A-Za-z]', formattext):
|
315 |
+
formattext = re.sub(r'[a-z]', lambda x: x.group(0).upper(), formattext)
|
316 |
+
formattext = chinese.mix_text_normalize(formattext)
|
317 |
+
return get_phones_and_bert(formattext,"zh",version)
|
318 |
+
else:
|
319 |
+
phones, word2ph, norm_text = clean_text_inf(formattext, language, version)
|
320 |
+
bert = get_bert_feature(norm_text, word2ph).to(device)
|
321 |
+
elif language == "yue" and re.search(r'[A-Za-z]', formattext):
|
322 |
+
formattext = re.sub(r'[a-z]', lambda x: x.group(0).upper(), formattext)
|
323 |
+
formattext = chinese.mix_text_normalize(formattext)
|
324 |
+
return get_phones_and_bert(formattext,"yue",version)
|
325 |
+
else:
|
326 |
+
phones, word2ph, norm_text = clean_text_inf(formattext, language, version)
|
327 |
+
bert = torch.zeros(
|
328 |
+
(1024, len(phones)),
|
329 |
+
dtype=torch.float16 if is_half == True else torch.float32,
|
330 |
+
).to(device)
|
331 |
+
elif language in {"zh", "ja", "ko", "yue", "auto", "auto_yue"}:
|
332 |
+
textlist=[]
|
333 |
+
langlist=[]
|
334 |
+
LangSegment.setfilters(["zh","ja","en","ko"])
|
335 |
+
if language == "auto":
|
336 |
+
for tmp in LangSegment.getTexts(text):
|
337 |
+
langlist.append(tmp["lang"])
|
338 |
+
textlist.append(tmp["text"])
|
339 |
+
elif language == "auto_yue":
|
340 |
+
for tmp in LangSegment.getTexts(text):
|
341 |
+
if tmp["lang"] == "zh":
|
342 |
+
tmp["lang"] = "yue"
|
343 |
+
langlist.append(tmp["lang"])
|
344 |
+
textlist.append(tmp["text"])
|
345 |
+
else:
|
346 |
+
for tmp in LangSegment.getTexts(text):
|
347 |
+
if tmp["lang"] == "en":
|
348 |
+
langlist.append(tmp["lang"])
|
349 |
+
else:
|
350 |
+
# 因无法区别中日韩文汉字,以用户输入为准
|
351 |
+
langlist.append(language)
|
352 |
+
textlist.append(tmp["text"])
|
353 |
+
print(textlist)
|
354 |
+
print(langlist)
|
355 |
+
phones_list = []
|
356 |
+
bert_list = []
|
357 |
+
norm_text_list = []
|
358 |
+
for i in range(len(textlist)):
|
359 |
+
lang = langlist[i]
|
360 |
+
phones, word2ph, norm_text = clean_text_inf(textlist[i], lang, version)
|
361 |
+
bert = get_bert_inf(phones, word2ph, norm_text, lang)
|
362 |
+
phones_list.append(phones)
|
363 |
+
norm_text_list.append(norm_text)
|
364 |
+
bert_list.append(bert)
|
365 |
+
bert = torch.cat(bert_list, dim=1)
|
366 |
+
phones = sum(phones_list, [])
|
367 |
+
norm_text = ''.join(norm_text_list)
|
368 |
+
|
369 |
+
return phones,bert.to(dtype),norm_text
|
370 |
+
|
371 |
+
|
372 |
+
def merge_short_text_in_array(texts, threshold):
|
373 |
+
if (len(texts)) < 2:
|
374 |
+
return texts
|
375 |
+
result = []
|
376 |
+
text = ""
|
377 |
+
for ele in texts:
|
378 |
+
text += ele
|
379 |
+
if len(text) >= threshold:
|
380 |
+
result.append(text)
|
381 |
+
text = ""
|
382 |
+
if (len(text) > 0):
|
383 |
+
if len(result) == 0:
|
384 |
+
result.append(text)
|
385 |
+
else:
|
386 |
+
result[len(result) - 1] += text
|
387 |
+
return result
|
388 |
+
|
389 |
+
##ref_wav_path+prompt_text+prompt_language+text(单个)+text_language+top_k+top_p+temperature
|
390 |
+
# cache_tokens={}#暂未实现清理机制
|
391 |
+
cache= {}
|
392 |
+
def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, how_to_cut=i18n("不切"), top_k=20, top_p=0.6, temperature=0.6, ref_free = False,speed=1,if_freeze=False,inp_refs=123):
|
393 |
+
global cache
|
394 |
+
if ref_wav_path:pass
|
395 |
+
else:gr.Warning(i18n('请上传参考音频'))
|
396 |
+
if text:pass
|
397 |
+
else:gr.Warning(i18n('请填入推理文本'))
|
398 |
+
t = []
|
399 |
+
if prompt_text is None or len(prompt_text) == 0:
|
400 |
+
ref_free = True
|
401 |
+
t0 = ttime()
|
402 |
+
prompt_language = dict_language[prompt_language]
|
403 |
+
text_language = dict_language[text_language]
|
404 |
+
|
405 |
+
|
406 |
+
if not ref_free:
|
407 |
+
prompt_text = prompt_text.strip("\n")
|
408 |
+
if (prompt_text[-1] not in splits): prompt_text += "。" if prompt_language != "en" else "."
|
409 |
+
print(i18n("实际输入的参考文本:"), prompt_text)
|
410 |
+
text = text.strip("\n")
|
411 |
+
if (text[0] not in splits and len(get_first(text)) < 4): text = "。" + text if text_language != "en" else "." + text
|
412 |
+
|
413 |
+
print(i18n("实际输入的目标文本:"), text)
|
414 |
+
zero_wav = np.zeros(
|
415 |
+
int(hps.data.sampling_rate * 0.3),
|
416 |
+
dtype=np.float16 if is_half == True else np.float32,
|
417 |
+
)
|
418 |
+
if not ref_free:
|
419 |
+
with torch.no_grad():
|
420 |
+
wav16k, sr = librosa.load(ref_wav_path, sr=16000)
|
421 |
+
if (wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000):
|
422 |
+
gr.Warning(i18n("参考音频在3~10秒范围外,请更换!"))
|
423 |
+
raise OSError(i18n("参考音频在3~10秒范围外,请更换!"))
|
424 |
+
wav16k = torch.from_numpy(wav16k)
|
425 |
+
zero_wav_torch = torch.from_numpy(zero_wav)
|
426 |
+
if is_half == True:
|
427 |
+
wav16k = wav16k.half().to(device)
|
428 |
+
zero_wav_torch = zero_wav_torch.half().to(device)
|
429 |
+
else:
|
430 |
+
wav16k = wav16k.to(device)
|
431 |
+
zero_wav_torch = zero_wav_torch.to(device)
|
432 |
+
wav16k = torch.cat([wav16k, zero_wav_torch])
|
433 |
+
ssl_content = ssl_model.model(wav16k.unsqueeze(0))[
|
434 |
+
"last_hidden_state"
|
435 |
+
].transpose(
|
436 |
+
1, 2
|
437 |
+
) # .float()
|
438 |
+
codes = vq_model.extract_latent(ssl_content)
|
439 |
+
prompt_semantic = codes[0, 0]
|
440 |
+
prompt = prompt_semantic.unsqueeze(0).to(device)
|
441 |
+
|
442 |
+
t1 = ttime()
|
443 |
+
t.append(t1-t0)
|
444 |
+
|
445 |
+
if (how_to_cut == i18n("凑四句一切")):
|
446 |
+
text = cut1(text)
|
447 |
+
elif (how_to_cut == i18n("凑50字一切")):
|
448 |
+
text = cut2(text)
|
449 |
+
elif (how_to_cut == i18n("按中文句号。切")):
|
450 |
+
text = cut3(text)
|
451 |
+
elif (how_to_cut == i18n("按英文句号.切")):
|
452 |
+
text = cut4(text)
|
453 |
+
elif (how_to_cut == i18n("按标点符号切")):
|
454 |
+
text = cut5(text)
|
455 |
+
while "\n\n" in text:
|
456 |
+
text = text.replace("\n\n", "\n")
|
457 |
+
print(i18n("实际输入的目标文本(切句后):"), text)
|
458 |
+
texts = text.split("\n")
|
459 |
+
texts = process_text(texts)
|
460 |
+
texts = merge_short_text_in_array(texts, 5)
|
461 |
+
audio_opt = []
|
462 |
+
if not ref_free:
|
463 |
+
phones1,bert1,norm_text1=get_phones_and_bert(prompt_text, prompt_language, version)
|
464 |
+
|
465 |
+
for i_text,text in enumerate(texts):
|
466 |
+
# 解决输入目标文本的空行导致报错的问题
|
467 |
+
if (len(text.strip()) == 0):
|
468 |
+
continue
|
469 |
+
if (text[-1] not in splits): text += "。" if text_language != "en" else "."
|
470 |
+
print(i18n("实际输入的目标文本(每句):"), text)
|
471 |
+
phones2,bert2,norm_text2=get_phones_and_bert(text, text_language, version)
|
472 |
+
print(i18n("前端处理后的文本(每句):"), norm_text2)
|
473 |
+
if not ref_free:
|
474 |
+
bert = torch.cat([bert1, bert2], 1)
|
475 |
+
all_phoneme_ids = torch.LongTensor(phones1+phones2).to(device).unsqueeze(0)
|
476 |
+
else:
|
477 |
+
bert = bert2
|
478 |
+
all_phoneme_ids = torch.LongTensor(phones2).to(device).unsqueeze(0)
|
479 |
+
|
480 |
+
bert = bert.to(device).unsqueeze(0)
|
481 |
+
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
|
482 |
+
|
483 |
+
t2 = ttime()
|
484 |
+
# cache_key="%s-%s-%s-%s-%s-%s-%s-%s"%(ref_wav_path,prompt_text,prompt_language,text,text_language,top_k,top_p,temperature)
|
485 |
+
# print(cache.keys(),if_freeze)
|
486 |
+
if(i_text in cache and if_freeze==True):pred_semantic=cache[i_text]
|
487 |
+
else:
|
488 |
+
with torch.no_grad():
|
489 |
+
pred_semantic, idx = t2s_model.model.infer_panel(
|
490 |
+
all_phoneme_ids,
|
491 |
+
all_phoneme_len,
|
492 |
+
None if ref_free else prompt,
|
493 |
+
bert,
|
494 |
+
# prompt_phone_len=ph_offset,
|
495 |
+
top_k=top_k,
|
496 |
+
top_p=top_p,
|
497 |
+
temperature=temperature,
|
498 |
+
early_stop_num=hz * max_sec,
|
499 |
+
)
|
500 |
+
pred_semantic = pred_semantic[:, -idx:].unsqueeze(0)
|
501 |
+
cache[i_text]=pred_semantic
|
502 |
+
t3 = ttime()
|
503 |
+
refers=[]
|
504 |
+
if(inp_refs):
|
505 |
+
for path in inp_refs:
|
506 |
+
try:
|
507 |
+
refer = get_spepc(hps, path.name).to(dtype).to(device)
|
508 |
+
refers.append(refer)
|
509 |
+
except:
|
510 |
+
traceback.print_exc()
|
511 |
+
if(len(refers)==0):refers = [get_spepc(hps, ref_wav_path).to(dtype).to(device)]
|
512 |
+
audio = (vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refers,speed=speed).detach().cpu().numpy()[0, 0])
|
513 |
+
max_audio=np.abs(audio).max()#简单防止16bit爆音
|
514 |
+
if max_audio>1:audio/=max_audio
|
515 |
+
audio_opt.append(audio)
|
516 |
+
audio_opt.append(zero_wav)
|
517 |
+
t4 = ttime()
|
518 |
+
t.extend([t2 - t1,t3 - t2, t4 - t3])
|
519 |
+
t1 = ttime()
|
520 |
+
print("%.3f\t%.3f\t%.3f\t%.3f" %
|
521 |
+
(t[0], sum(t[1::3]), sum(t[2::3]), sum(t[3::3]))
|
522 |
+
)
|
523 |
+
yield hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(
|
524 |
+
np.int16
|
525 |
+
)
|
526 |
+
|
527 |
+
|
528 |
+
def split(todo_text):
|
529 |
+
todo_text = todo_text.replace("……", "。").replace("——", ",")
|
530 |
+
if todo_text[-1] not in splits:
|
531 |
+
todo_text += "。"
|
532 |
+
i_split_head = i_split_tail = 0
|
533 |
+
len_text = len(todo_text)
|
534 |
+
todo_texts = []
|
535 |
+
while 1:
|
536 |
+
if i_split_head >= len_text:
|
537 |
+
break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
|
538 |
+
if todo_text[i_split_head] in splits:
|
539 |
+
i_split_head += 1
|
540 |
+
todo_texts.append(todo_text[i_split_tail:i_split_head])
|
541 |
+
i_split_tail = i_split_head
|
542 |
+
else:
|
543 |
+
i_split_head += 1
|
544 |
+
return todo_texts
|
545 |
+
|
546 |
+
|
547 |
+
def cut1(inp):
|
548 |
+
inp = inp.strip("\n")
|
549 |
+
inps = split(inp)
|
550 |
+
split_idx = list(range(0, len(inps), 4))
|
551 |
+
split_idx[-1] = None
|
552 |
+
if len(split_idx) > 1:
|
553 |
+
opts = []
|
554 |
+
for idx in range(len(split_idx) - 1):
|
555 |
+
opts.append("".join(inps[split_idx[idx]: split_idx[idx + 1]]))
|
556 |
+
else:
|
557 |
+
opts = [inp]
|
558 |
+
opts = [item for item in opts if not set(item).issubset(punctuation)]
|
559 |
+
return "\n".join(opts)
|
560 |
+
|
561 |
+
|
562 |
+
def cut2(inp):
|
563 |
+
inp = inp.strip("\n")
|
564 |
+
inps = split(inp)
|
565 |
+
if len(inps) < 2:
|
566 |
+
return inp
|
567 |
+
opts = []
|
568 |
+
summ = 0
|
569 |
+
tmp_str = ""
|
570 |
+
for i in range(len(inps)):
|
571 |
+
summ += len(inps[i])
|
572 |
+
tmp_str += inps[i]
|
573 |
+
if summ > 50:
|
574 |
+
summ = 0
|
575 |
+
opts.append(tmp_str)
|
576 |
+
tmp_str = ""
|
577 |
+
if tmp_str != "":
|
578 |
+
opts.append(tmp_str)
|
579 |
+
# print(opts)
|
580 |
+
if len(opts) > 1 and len(opts[-1]) < 50: ##如果最后一个太短了,和前一个合一起
|
581 |
+
opts[-2] = opts[-2] + opts[-1]
|
582 |
+
opts = opts[:-1]
|
583 |
+
opts = [item for item in opts if not set(item).issubset(punctuation)]
|
584 |
+
return "\n".join(opts)
|
585 |
+
|
586 |
+
|
587 |
+
def cut3(inp):
|
588 |
+
inp = inp.strip("\n")
|
589 |
+
opts = ["%s" % item for item in inp.strip("。").split("。")]
|
590 |
+
opts = [item for item in opts if not set(item).issubset(punctuation)]
|
591 |
+
return "\n".join(opts)
|
592 |
+
|
593 |
+
def cut4(inp):
|
594 |
+
inp = inp.strip("\n")
|
595 |
+
opts = ["%s" % item for item in inp.strip(".").split(".")]
|
596 |
+
opts = [item for item in opts if not set(item).issubset(punctuation)]
|
597 |
+
return "\n".join(opts)
|
598 |
+
|
599 |
+
|
600 |
+
# contributed by https://github.com/AI-Hobbyist/GPT-SoVITS/blob/main/GPT_SoVITS/inference_webui.py
|
601 |
+
def cut5(inp):
|
602 |
+
inp = inp.strip("\n")
|
603 |
+
punds = {',', '.', ';', '?', '!', '、', ',', '。', '?', '!', ';', ':', '…'}
|
604 |
+
mergeitems = []
|
605 |
+
items = []
|
606 |
+
|
607 |
+
for i, char in enumerate(inp):
|
608 |
+
if char in punds:
|
609 |
+
if char == '.' and i > 0 and i < len(inp) - 1 and inp[i - 1].isdigit() and inp[i + 1].isdigit():
|
610 |
+
items.append(char)
|
611 |
+
else:
|
612 |
+
items.append(char)
|
613 |
+
mergeitems.append("".join(items))
|
614 |
+
items = []
|
615 |
+
else:
|
616 |
+
items.append(char)
|
617 |
+
|
618 |
+
if items:
|
619 |
+
mergeitems.append("".join(items))
|
620 |
+
|
621 |
+
opt = [item for item in mergeitems if not set(item).issubset(punds)]
|
622 |
+
return "\n".join(opt)
|
623 |
+
|
624 |
+
|
625 |
+
def custom_sort_key(s):
|
626 |
+
# 使用正则表达式提取字符串中的数字部分和非数字部分
|
627 |
+
parts = re.split('(\d+)', s)
|
628 |
+
# 将数字部分转换为整数,非数字部分保持不变
|
629 |
+
parts = [int(part) if part.isdigit() else part for part in parts]
|
630 |
+
return parts
|
631 |
+
|
632 |
+
def process_text(texts):
|
633 |
+
_text=[]
|
634 |
+
if all(text in [None, " ", "\n",""] for text in texts):
|
635 |
+
raise ValueError(i18n("请输入有效文本"))
|
636 |
+
for text in texts:
|
637 |
+
if text in [None, " ", ""]:
|
638 |
+
pass
|
639 |
+
else:
|
640 |
+
_text.append(text)
|
641 |
+
return _text
|
642 |
+
|
643 |
+
|
644 |
+
def change_choices():
|
645 |
+
SoVITS_names, GPT_names = get_weights_names(GPT_weight_root, SoVITS_weight_root)
|
646 |
+
return {"choices": sorted(SoVITS_names, key=custom_sort_key), "__type__": "update"}, {"choices": sorted(GPT_names, key=custom_sort_key), "__type__": "update"}
|
647 |
+
|
648 |
+
|
649 |
+
SoVITS_weight_root=["SoVITS_weights_v2","SoVITS_weights"]
|
650 |
+
GPT_weight_root=["GPT_weights_v2","GPT_weights"]
|
651 |
+
for path in SoVITS_weight_root+GPT_weight_root:
|
652 |
+
os.makedirs(path,exist_ok=True)
|
653 |
+
|
654 |
+
|
655 |
+
def get_weights_names(GPT_weight_root, SoVITS_weight_root):
|
656 |
+
SoVITS_names = [i for i in pretrained_sovits_name]
|
657 |
+
for path in SoVITS_weight_root:
|
658 |
+
for name in os.listdir(path):
|
659 |
+
if name.endswith(".pth"): SoVITS_names.append("%s/%s" % (path, name))
|
660 |
+
GPT_names = [i for i in pretrained_gpt_name]
|
661 |
+
for path in GPT_weight_root:
|
662 |
+
for name in os.listdir(path):
|
663 |
+
if name.endswith(".ckpt"): GPT_names.append("%s/%s" % (path, name))
|
664 |
+
return SoVITS_names, GPT_names
|
665 |
+
|
666 |
+
|
667 |
+
SoVITS_names, GPT_names = get_weights_names(GPT_weight_root, SoVITS_weight_root)
|
668 |
+
|
669 |
+
def html_center(text, label='p'):
|
670 |
+
return f"""<div style="text-align: center; margin: 100; padding: 50;">
|
671 |
+
<{label} style="margin: 0; padding: 0;">{text}</{label}>
|
672 |
+
</div>"""
|
673 |
+
|
674 |
+
def html_left(text, label='p'):
|
675 |
+
return f"""<div style="text-align: left; margin: 0; padding: 0;">
|
676 |
+
<{label} style="margin: 0; padding: 0;">{text}</{label}>
|
677 |
+
</div>"""
|
678 |
+
|
679 |
+
|
680 |
+
with gr.Blocks(title="GPT-SoVITS WebUI") as app:
|
681 |
+
gr.Markdown(
|
682 |
+
value=i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>.")
|
683 |
+
)
|
684 |
+
with gr.Group():
|
685 |
+
gr.Markdown(html_center(i18n("模型切换"),'h3'))
|
686 |
+
with gr.Row():
|
687 |
+
GPT_dropdown = gr.Dropdown(label=i18n("GPT模型列表"), choices=sorted(GPT_names, key=custom_sort_key), value=gpt_path, interactive=True, scale=14)
|
688 |
+
SoVITS_dropdown = gr.Dropdown(label=i18n("SoVITS模型列表"), choices=sorted(SoVITS_names, key=custom_sort_key), value=sovits_path, interactive=True, scale=14)
|
689 |
+
refresh_button = gr.Button(i18n("刷新模型路径"), variant="primary", scale=14)
|
690 |
+
refresh_button.click(fn=change_choices, inputs=[], outputs=[SoVITS_dropdown, GPT_dropdown])
|
691 |
+
gr.Markdown(html_center(i18n("*请上传并填写参考信息"),'h3'))
|
692 |
+
with gr.Row():
|
693 |
+
inp_ref = gr.Audio(label=i18n("请上传3~10秒内参考音频,超过会报错!"), type="filepath", scale=13)
|
694 |
+
with gr.Column(scale=13):
|
695 |
+
ref_text_free = gr.Checkbox(label=i18n("开启无参考文本模式。不填参考文本亦相当于开启。"), value=False, interactive=True, show_label=True)
|
696 |
+
gr.Markdown(html_left(i18n("使用无参考文本模式时建议使用微调的GPT,听不清参考音频说的啥(不晓得写啥)可以开。<br>开启后无视填写的参考文本。")))
|
697 |
+
prompt_text = gr.Textbox(label=i18n("参考音频的文本"), value="", lines=3, max_lines=3)
|
698 |
+
prompt_language = gr.Dropdown(
|
699 |
+
label=i18n("参考音频的语种"), choices=list(dict_language.keys()), value=i18n("中文"), scale=14
|
700 |
+
)
|
701 |
+
inp_refs = gr.File(label=i18n("可选项:通过拖拽多个文件上传多个参考音频(建议同性),平均融合他们的音色。如不填写此项,音色由左侧单个参考音频控制。如是微调模型,建议参考音频全部在微调训练集音色内,底模不用管。"),file_count="multiple",scale=13)
|
702 |
+
gr.Markdown(html_center(i18n("*请填写需要合成的目标文本和语种模式"),'h3'))
|
703 |
+
with gr.Row():
|
704 |
+
with gr.Column(scale=13):
|
705 |
+
text = gr.Textbox(label=i18n("需要合成的文本"), value="", lines=26, max_lines=26)
|
706 |
+
with gr.Column(scale=7):
|
707 |
+
text_language = gr.Dropdown(
|
708 |
+
label=i18n("需要合成的语种")+i18n(".限制范围越小判别效果越好。"), choices=list(dict_language.keys()), value=i18n("中文"), scale=1
|
709 |
+
)
|
710 |
+
how_to_cut = gr.Dropdown(
|
711 |
+
label=i18n("怎么切"),
|
712 |
+
choices=[i18n("不切"), i18n("凑四句一切"), i18n("凑50字一切"), i18n("按中文句号。切"), i18n("按英文句号.切"), i18n("按标点符号切"), ],
|
713 |
+
value=i18n("凑四句一切"),
|
714 |
+
interactive=True, scale=1
|
715 |
+
)
|
716 |
+
gr.Markdown(value=html_center(i18n("语速调整,高为更快")))
|
717 |
+
if_freeze=gr.Checkbox(label=i18n("是否直接对上次合成结果调整语速和音色。防止随机性。"), value=False, interactive=True,show_label=True, scale=1)
|
718 |
+
speed = gr.Slider(minimum=0.6,maximum=1.65,step=0.05,label=i18n("语速"),value=1,interactive=True, scale=1)
|
719 |
+
gr.Markdown(html_center(i18n("GPT采样参数(无参考文本时不要太低。不懂就用默认):")))
|
720 |
+
top_k = gr.Slider(minimum=1,maximum=100,step=1,label=i18n("top_k"),value=15,interactive=True, scale=1)
|
721 |
+
top_p = gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("top_p"),value=1,interactive=True, scale=1)
|
722 |
+
temperature = gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("temperature"),value=1,interactive=True, scale=1)
|
723 |
+
# with gr.Column():
|
724 |
+
# gr.Markdown(value=i18n("手工调整音素。当音素框不为空时使用手工音素输入推理,无视目标文本框。"))
|
725 |
+
# phoneme=gr.Textbox(label=i18n("音素框"), value="")
|
726 |
+
# get_phoneme_button = gr.Button(i18n("目标文本转音素"), variant="primary")
|
727 |
+
with gr.Row():
|
728 |
+
inference_button = gr.Button(i18n("合成语音"), variant="primary", size='lg', scale=25)
|
729 |
+
output = gr.Audio(label=i18n("输出的语音"), scale=14)
|
730 |
+
|
731 |
+
inference_button.click(
|
732 |
+
get_tts_wav,
|
733 |
+
[inp_ref, prompt_text, prompt_language, text, text_language, how_to_cut, top_k, top_p, temperature, ref_text_free,speed,if_freeze,inp_refs],
|
734 |
+
[output],
|
735 |
+
)
|
736 |
+
SoVITS_dropdown.change(change_sovits_weights, [SoVITS_dropdown,prompt_language,text_language], [prompt_language,text_language,prompt_text,prompt_language,text,text_language])
|
737 |
+
GPT_dropdown.change(change_gpt_weights, [GPT_dropdown], [])
|
738 |
+
|
739 |
+
# gr.Markdown(value=i18n("文本切分工具。太长的文本合成出来效果不一定好,所以太长建议先切。合成会根据文本的换行分开合成再拼起来。"))
|
740 |
+
# with gr.Row():
|
741 |
+
# text_inp = gr.Textbox(label=i18n("需要合成的切分前文本"), value="")
|
742 |
+
# button1 = gr.Button(i18n("凑四句一切"), variant="primary")
|
743 |
+
# button2 = gr.Button(i18n("凑50字一切"), variant="primary")
|
744 |
+
# button3 = gr.Button(i18n("按中文句号。切"), variant="primary")
|
745 |
+
# button4 = gr.Button(i18n("按英文句号.切"), variant="primary")
|
746 |
+
# button5 = gr.Button(i18n("按标点符号切"), variant="primary")
|
747 |
+
# text_opt = gr.Textbox(label=i18n("切分后文本"), value="")
|
748 |
+
# button1.click(cut1, [text_inp], [text_opt])
|
749 |
+
# button2.click(cut2, [text_inp], [text_opt])
|
750 |
+
# button3.click(cut3, [text_inp], [text_opt])
|
751 |
+
# button4.click(cut4, [text_inp], [text_opt])
|
752 |
+
# button5.click(cut5, [text_inp], [text_opt])
|
753 |
+
# gr.Markdown(html_center(i18n("后续将支持转音素、手工修改音素、语音合成分步执行。")))
|
754 |
+
|
755 |
+
if __name__ == '__main__':
|
756 |
+
app.queue(concurrency_count=511, max_size=1022).launch(
|
757 |
+
server_name="0.0.0.0",
|
758 |
+
inbrowser=True,
|
759 |
+
share=True,
|
760 |
+
server_port=infer_ttswebui,
|
761 |
+
quiet=True,
|
762 |
+
)
|