CosyVoiceUI / app_demo.py
kevinwang676's picture
Update app_demo.py
3a2f61c verified
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append('{}/third_party/Matcha-TTS'.format(ROOT_DIR))
import argparse
import gradio as gr
import numpy as np
import torch
import random
import spaces
import logging
logging.getLogger('matplotlib').setLevel(logging.WARNING)
logging.basicConfig(level=logging.WARNING,
format='%(asctime)s %(levelname)s %(message)s')
def generate_seed():
seed = random.randint(1, 100000000)
return {
"__type__": "update",
"value": seed
}
def set_all_random_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
max_val = 0.8
def postprocess(speech, top_db=60, hop_length=220, win_length=440):
speech, _ = librosa.effects.trim(
speech, top_db=top_db,
frame_length=win_length,
hop_length=hop_length
)
if speech.abs().max() > max_val:
speech = speech / speech.abs().max() * max_val
speech = torch.concat([speech, torch.zeros(1, int(target_sr * 0.2))], dim=1)
return speech
inference_mode_list = ['3s极速复刻', '跨语种复刻']
instruct_dict = {'预训练音色': '1. 选择预训练音色\n2.点击生成音频按钮',
'3s极速复刻': '1. 本地上传参考音频,或麦克风录入参考音频,若同时提供,优先选择本地上传的参考音频\n2. 输入参考音频对应的文本内容以及您希望声音复刻的文本内容\n3.点击“一键开启声音复刻之旅吧💕”按钮',
'跨语种复刻': '1. 本地上传参考音频,或麦克风录入参考音频,若同时提供,优先选择本地上传的参考音频\n2. 输入参考音频对应的文本内容以及您希望声音复刻的文本内容,建议选择不同语种的文本\n3.点击“一键开启声音复刻之旅吧💕”按钮',
'自然语言控制': '1. 输入instruct文本\n2.点击生成音频按钮'}
def change_instruction(mode_checkbox_group):
return instruct_dict[mode_checkbox_group]
@spaces.GPU
def generate_audio(tts_text, mode_checkbox_group, sft_dropdown, prompt_text, prompt_wav_upload, prompt_wav_record, instruct_text, seed):
return "jay_short.wav"
def main():
with gr.Blocks() as demo:
gr.Markdown("# <center>🌊💕🎶 [CosyVoice](https://github.com/FunAudioLLM/CosyVoice) 3秒音频,开启最强声音复刻</center>")
gr.Markdown("## <center>🌟 只需3秒参考音频,一键开启超拟人真实声音复刻,支持中日英韩粤语,无需任何训练!</center>")
gr.Markdown("### <center>🤗 更多精彩,尽在[滔滔AI](https://www.talktalkai.com/);滔滔AI,为爱滔滔!💕</center>")
with gr.Row():
tts_text = gr.Textbox(label="请填写您希望声音复刻的文本内容", lines=3, placeholder="想说却还没说的,还很多...")
mode_checkbox_group = gr.Radio(choices=inference_mode_list, label='请选择声音复刻类型', value=inference_mode_list[0])
instruction_text = gr.Text(label="📔 操作指南", value=instruct_dict[inference_mode_list[0]], scale=0.5)
sft_dropdown = gr.Dropdown(choices=["1", "2"], label='选择预训练音色', value="1", scale=0.25, visible=False)
with gr.Column(scale=0.25):
seed_button = gr.Button(value="\U0001F3B2", visible=True)
seed = gr.Number(value=0, label="随机推理种子", info="默认为0,即每次生成结果一致", visible=True)
with gr.Row():
prompt_wav_upload = gr.Audio(sources='upload', type='filepath', label='请从本地上传您喜欢的参考音频,注意采样率不低于16kHz')
prompt_wav_record = gr.Audio(sources='microphone', type='filepath', label='通过麦克风录制参考音频,程序会优先使用本地上传的参考音频')
prompt_text = gr.Textbox(label="请填写参考音频对应的文本内容", lines=1, value='')
instruct_text = gr.Textbox(label="输入instruct文本", lines=1, placeholder="请输入instruct文本.", value='', visible=False)
generate_button = gr.Button("一键开启声音复刻之旅吧💕", variant="primary")
audio_output = gr.Audio(label="为您生成的专属音频🎶", interactive=True)
seed_button.click(generate_seed, inputs=[], outputs=seed)
generate_button.click(generate_audio,
inputs=[tts_text, mode_checkbox_group, sft_dropdown, prompt_text, prompt_wav_upload, prompt_wav_record, instruct_text, seed],
outputs=[audio_output])
mode_checkbox_group.change(fn=change_instruction, inputs=[mode_checkbox_group], outputs=[instruction_text])
gr.Markdown("### <center>注意❗:请不要生成会对个人以及组织造成侵害的内容,此程序仅供科研、学习及个人娱乐使用。请自觉合规使用此程序,程序开发者不负有任何责任。</center>")
gr.HTML('''
<div class="footer">
<p>🌊🏞️🎶 - 江水东流急,滔滔无尽声。 明·顾璘
</p>
</div>
''')
demo.queue()
demo.launch(show_error=True)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--port',
type=int,
default=8000)
parser.add_argument('--model_dir',
type=str,
default='iic/CosyVoice-300M',
help='local path or modelscope repo id')
args = parser.parse_args()
prompt_sr, target_sr = 16000, 22050
default_data = np.zeros(target_sr)
main()