Spaces:
Runtime error
Runtime error
# set random seed, so that you may reproduce your result. | |
__set_seed1: !apply:random.seed [1986] | |
__set_seed2: !apply:numpy.random.seed [1986] | |
__set_seed3: !apply:torch.manual_seed [1986] | |
__set_seed4: !apply:torch.cuda.manual_seed_all [1986] | |
# fixed params | |
sample_rate: 22050 | |
text_encoder_input_size: 512 | |
llm_input_size: 1024 | |
llm_output_size: 1024 | |
spk_embed_dim: 192 | |
# model params | |
# for all class/function included in this repo, we use !<name> or !<new> for intialization, so that user may find all corresponding class/function according to one single yaml. | |
# for system/third_party class/function, we do not require this. | |
llm: !new:cosyvoice.llm.llm.TransformerLM | |
text_encoder_input_size: !ref <text_encoder_input_size> | |
llm_input_size: !ref <llm_input_size> | |
llm_output_size: !ref <llm_output_size> | |
text_token_size: 51866 | |
speech_token_size: 4096 | |
length_normalized_loss: True | |
lsm_weight: 0 | |
spk_embed_dim: !ref <spk_embed_dim> | |
text_encoder: !new:cosyvoice.transformer.encoder.ConformerEncoder | |
input_size: !ref <text_encoder_input_size> | |
output_size: 1024 | |
attention_heads: 8 | |
linear_units: 2048 | |
num_blocks: 3 | |
dropout_rate: 0.1 | |
positional_dropout_rate: 0.1 | |
attention_dropout_rate: 0 | |
normalize_before: True | |
input_layer: 'linear' | |
pos_enc_layer_type: 'rel_pos_espnet' | |
selfattention_layer_type: 'rel_selfattn' | |
use_cnn_module: False | |
macaron_style: False | |
use_dynamic_chunk: False | |
use_dynamic_left_chunk: False | |
static_chunk_size: 1 | |
llm: !new:cosyvoice.transformer.encoder.TransformerEncoder | |
input_size: !ref <llm_input_size> | |
output_size: !ref <llm_output_size> | |
attention_heads: 8 | |
linear_units: 2048 | |
num_blocks: 7 | |
dropout_rate: 0.1 | |
positional_dropout_rate: 0.1 | |
attention_dropout_rate: 0 | |
input_layer: 'linear_legacy' | |
pos_enc_layer_type: 'rel_pos_espnet' | |
selfattention_layer_type: 'rel_selfattn' | |
static_chunk_size: 1 | |
flow: !new:cosyvoice.flow.flow.MaskedDiffWithXvec | |
input_size: 512 | |
output_size: 80 | |
spk_embed_dim: !ref <spk_embed_dim> | |
output_type: 'mel' | |
vocab_size: 4096 | |
input_frame_rate: 50 | |
only_mask_loss: True | |
encoder: !new:cosyvoice.transformer.encoder.ConformerEncoder | |
output_size: 512 | |
attention_heads: 8 | |
linear_units: 2048 | |
num_blocks: 6 | |
dropout_rate: 0.1 | |
positional_dropout_rate: 0.1 | |
attention_dropout_rate: 0.1 | |
normalize_before: True | |
input_layer: 'linear' | |
pos_enc_layer_type: 'rel_pos_espnet' | |
selfattention_layer_type: 'rel_selfattn' | |
input_size: 512 | |
use_cnn_module: False | |
macaron_style: False | |
length_regulator: !new:cosyvoice.flow.length_regulator.InterpolateRegulator | |
channels: 80 | |
sampling_ratios: [1, 1, 1, 1] | |
decoder: !new:cosyvoice.flow.flow_matching.ConditionalCFM | |
in_channels: 240 | |
n_spks: 1 | |
spk_emb_dim: 80 | |
cfm_params: !new:omegaconf.DictConfig | |
content: | |
sigma_min: 1e-06 | |
solver: 'euler' | |
t_scheduler: 'cosine' | |
training_cfg_rate: 0.2 | |
inference_cfg_rate: 0.7 | |
reg_loss_type: 'l1' | |
estimator: !new:cosyvoice.flow.decoder.ConditionalDecoder | |
in_channels: 320 | |
out_channels: 80 | |
channels: [256, 256] | |
dropout: 0 | |
attention_head_dim: 64 | |
n_blocks: 4 | |
num_mid_blocks: 12 | |
num_heads: 8 | |
act_fn: 'gelu' | |
hift: !new:cosyvoice.hifigan.generator.HiFTGenerator | |
in_channels: 80 | |
base_channels: 512 | |
nb_harmonics: 8 | |
sampling_rate: !ref <sample_rate> | |
nsf_alpha: 0.1 | |
nsf_sigma: 0.003 | |
nsf_voiced_threshold: 10 | |
upsample_rates: [8, 8] | |
upsample_kernel_sizes: [16, 16] | |
istft_params: | |
n_fft: 16 | |
hop_len: 4 | |
resblock_kernel_sizes: [3, 7, 11] | |
resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5], [1, 3, 5]] | |
source_resblock_kernel_sizes: [7, 11] | |
source_resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5]] | |
lrelu_slope: 0.1 | |
audio_limit: 0.99 | |
f0_predictor: !new:cosyvoice.hifigan.f0_predictor.ConvRNNF0Predictor | |
num_class: 1 | |
in_channels: 80 | |
cond_channels: 512 | |
# processor functions | |
parquet_opener: !name:cosyvoice.dataset.processor.parquet_opener | |
get_tokenizer: !name:whisper.tokenizer.get_tokenizer | |
multilingual: True | |
num_languages: 100 | |
language: 'en' | |
task: 'transcribe' | |
allowed_special: 'all' | |
tokenize: !name:cosyvoice.dataset.processor.tokenize | |
get_tokenizer: !ref <get_tokenizer> | |
allowed_special: !ref <allowed_special> | |
filter: !name:cosyvoice.dataset.processor.filter | |
max_length: 40960 | |
min_length: 0 | |
token_max_length: 200 | |
token_min_length: 1 | |
resample: !name:cosyvoice.dataset.processor.resample | |
resample_rate: !ref <sample_rate> | |
feat_extractor: !name:matcha.utils.audio.mel_spectrogram | |
n_fft: 1024 | |
num_mels: 80 | |
sampling_rate: !ref <sample_rate> | |
hop_size: 256 | |
win_size: 1024 | |
fmin: 0 | |
fmax: 8000 | |
center: False | |
compute_fbank: !name:cosyvoice.dataset.processor.compute_fbank | |
feat_extractor: !ref <feat_extractor> | |
parse_embedding: !name:cosyvoice.dataset.processor.parse_embedding | |
normalize: True | |
shuffle: !name:cosyvoice.dataset.processor.shuffle | |
shuffle_size: 1000 | |
sort: !name:cosyvoice.dataset.processor.sort | |
sort_size: 500 # sort_size should be less than shuffle_size | |
batch: !name:cosyvoice.dataset.processor.batch | |
batch_type: 'dynamic' | |
max_frames_in_batch: 12000 | |
padding: !name:cosyvoice.dataset.processor.padding | |
use_spk_embedding: False # change to True during sft | |
# dataset processor pipeline | |
data_pipeline: [ | |
!ref <parquet_opener>, | |
!ref <tokenize>, | |
!ref <filter>, | |
!ref <resample>, | |
!ref <compute_fbank>, | |
!ref <parse_embedding>, | |
!ref <shuffle>, | |
!ref <sort>, | |
!ref <batch>, | |
!ref <padding>, | |
] | |
# train conf | |
train_conf: | |
optim: adam | |
optim_conf: | |
lr: 0.002 # change to 0.001 if you want to train flow from scratch | |
scheduler: warmuplr | |
scheduler_conf: | |
warmup_steps: 25000 | |
max_epoch: 200 | |
grad_clip: 5 | |
accum_grad: 2 | |
log_interval: 100 | |
save_per_step: -1 |