|
|
|
|
|
import gradio as gr |
|
|
|
from settings import ( |
|
DEFAULT_IMAGE_RESOLUTION, |
|
DEFAULT_NUM_IMAGES, |
|
MAX_IMAGE_RESOLUTION, |
|
MAX_NUM_IMAGES, |
|
MAX_SEED, |
|
) |
|
from utils import randomize_seed_fn |
|
|
|
|
|
def create_demo(process): |
|
with gr.Blocks() as demo: |
|
with gr.Row(): |
|
with gr.Column(): |
|
image = gr.Image() |
|
prompt = gr.Textbox(label="Prompt") |
|
run_button = gr.Button("Run") |
|
with gr.Accordion("Advanced options", open=False): |
|
preprocessor_name = gr.Radio( |
|
label="Preprocessor", choices=["Midas", "DPT", "None"], type="value", value="DPT" |
|
) |
|
num_samples = gr.Slider( |
|
label="Number of images", minimum=1, maximum=MAX_NUM_IMAGES, value=DEFAULT_NUM_IMAGES, step=1 |
|
) |
|
image_resolution = gr.Slider( |
|
label="Image resolution", |
|
minimum=256, |
|
maximum=MAX_IMAGE_RESOLUTION, |
|
value=DEFAULT_IMAGE_RESOLUTION, |
|
step=256, |
|
) |
|
preprocess_resolution = gr.Slider( |
|
label="Preprocess resolution", minimum=128, maximum=512, value=384, step=1 |
|
) |
|
num_steps = gr.Slider(label="Number of steps", minimum=1, maximum=100, value=20, step=1) |
|
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1) |
|
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) |
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
a_prompt = gr.Textbox(label="Additional prompt", value="best quality, extremely detailed") |
|
n_prompt = gr.Textbox( |
|
label="Negative prompt", |
|
value="longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality", |
|
) |
|
with gr.Column(): |
|
result = gr.Gallery(label="Output", show_label=False, columns=2, object_fit="scale-down") |
|
inputs = [ |
|
image, |
|
prompt, |
|
a_prompt, |
|
n_prompt, |
|
num_samples, |
|
image_resolution, |
|
preprocess_resolution, |
|
num_steps, |
|
guidance_scale, |
|
seed, |
|
preprocessor_name, |
|
] |
|
prompt.submit( |
|
fn=randomize_seed_fn, |
|
inputs=[seed, randomize_seed], |
|
outputs=seed, |
|
queue=False, |
|
api_name=False, |
|
).then( |
|
fn=process, |
|
inputs=inputs, |
|
outputs=result, |
|
api_name=False, |
|
) |
|
run_button.click( |
|
fn=randomize_seed_fn, |
|
inputs=[seed, randomize_seed], |
|
outputs=seed, |
|
queue=False, |
|
api_name=False, |
|
).then( |
|
fn=process, |
|
inputs=inputs, |
|
outputs=result, |
|
api_name="depth", |
|
) |
|
return demo |
|
|
|
|
|
if __name__ == "__main__": |
|
from model import Model |
|
|
|
model = Model(task_name="depth") |
|
demo = create_demo(model.process_depth) |
|
demo.queue().launch() |
|
|