Spaces:
Paused
Paused
# -*- coding: utf-8 -*- | |
""" | |
@author:XuMing(xuming624@qq.com) | |
@description: | |
modified from https://github.com/imClumsyPanda/langchain-ChatGLM/blob/master/webui.py | |
""" | |
import gradio as gr | |
import os | |
import shutil | |
from loguru import logger | |
from chatpdf import ChatPDF | |
pwd_path = os.path.abspath(os.path.dirname(__file__)) | |
CONTENT_DIR = os.path.join(pwd_path, "content") | |
logger.info(f"CONTENT_DIR: {CONTENT_DIR}") | |
VECTOR_SEARCH_TOP_K = 3 | |
MAX_INPUT_LEN = 512 | |
embedding_model_dict = { | |
"sentence-transformers": "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2", | |
"ernie-tiny": "nghuyong/ernie-3.0-nano-zh", | |
"ernie-base": "nghuyong/ernie-3.0-base-zh", | |
"text2vec": "shibing624/text2vec-base-chinese", | |
} | |
# supported LLM models | |
llm_model_dict = { | |
"chatglm-6b-int4": "THUDM/chatglm-6b-int4", | |
"chatglm-6b-int4-qe": "THUDM/chatglm-6b-int4-qe", | |
"chatglm-6b": "THUDM/chatglm-6b", | |
"llama-7b": "decapoda-research/llama-7b-hf", | |
"llama-13b": "decapoda-research/llama-13b-hf", | |
} | |
llm_model_dict_list = list(llm_model_dict.keys()) | |
embedding_model_dict_list = list(embedding_model_dict.keys()) | |
model = ChatPDF( | |
sim_model_name_or_path="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2", | |
gen_model_type="chatglm", | |
gen_model_name_or_path="THUDM/chatglm-6b-int4", | |
lora_model_name_or_path=None, | |
max_input_size=MAX_INPUT_LEN, | |
) | |
def get_file_list(): | |
if not os.path.exists("content"): | |
return [] | |
return [f for f in os.listdir("content") if | |
f.endswith(".txt") or f.endswith(".pdf") or f.endswith(".docx") or f.endswith(".md")] | |
file_list = get_file_list() | |
def upload_file(file): | |
if not os.path.exists(CONTENT_DIR): | |
os.mkdir(CONTENT_DIR) | |
filename = os.path.basename(file.name) | |
shutil.move(file.name, os.path.join(CONTENT_DIR, filename)) | |
# file_list首位插入新上传的文件 | |
file_list.insert(0, filename) | |
return gr.Dropdown.update(choices=file_list, value=filename) | |
def get_answer(query, index_path, history): | |
if index_path: | |
if not model.sim_model.corpus_embeddings: | |
model.load_index(index_path) | |
response, empty_history = model.query(query, topn=VECTOR_SEARCH_TOP_K) | |
history = history + [[query, response]] | |
else: | |
# history = history + [[None, "请先加载文件后,再进行提问。"]] | |
# 未加载文件,仅返回生成模型结果 | |
response, empty_history = model.gen_model.chat(query) | |
history = history + [[query, response]] | |
logger.debug(f"query: {query}, response: {response}") | |
return history, "" | |
def update_status(history, status): | |
history = history + [[None, status]] | |
logger.info(status) | |
return history | |
def reinit_model(llm_model, embedding_model, history): | |
try: | |
global model | |
del model | |
model = ChatPDF( | |
sim_model_name_or_path=embedding_model_dict.get( | |
embedding_model, | |
"sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"), | |
gen_model_type=llm_model.split('-')[0], | |
gen_model_name_or_path=llm_model_dict.get(llm_model, "THUDM/chatglm-6b-int4"), | |
lora_model_name_or_path=None, | |
max_input_size=MAX_INPUT_LEN, | |
) | |
model_status = """模型已成功重新加载,请选择文件后点击"加载文件"按钮""" | |
except Exception as e: | |
model = None | |
logger.error(e) | |
model_status = """模型未成功重新加载,请重新选择后点击"加载模型"按钮""" | |
return history + [[None, model_status]] | |
def get_vector_store(filepath, history): | |
logger.info(filepath, history) | |
index_path = None | |
file_status = '' | |
if model is not None: | |
local_file_path = os.path.join(CONTENT_DIR, filepath) | |
local_index_path = os.path.join(CONTENT_DIR, filepath + ".index.json") | |
if os.path.exists(local_file_path): | |
model.load_pdf_file(local_file_path) | |
model.save_index(local_index_path) | |
index_path = local_index_path | |
if index_path: | |
file_status = "文件已成功加载,请开始提问" | |
else: | |
file_status = "文件未成功加载,请重新上传文件" | |
else: | |
file_status = "模型未完成加载,请先在加载模型后再导入文件" | |
return index_path, history + [[None, file_status]] | |
def reset_chat(chatbot, state): | |
return None, None | |
block_css = """.importantButton { | |
background: linear-gradient(45deg, #7e0570,#5d1c99, #6e00ff) !important; | |
border: none !important; | |
} | |
.importantButton:hover { | |
background: linear-gradient(45deg, #ff00e0,#8500ff, #6e00ff) !important; | |
border: none !important; | |
}""" | |
webui_title = """ | |
# 🎉ChatPDF WebUI🎉 | |
Link in: [https://github.com/shibing624/ChatPDF](https://github.com/shibing624/ChatPDF) PS: 2核CPU 16G内存机器,约2min一条😭 | |
""" | |
init_message = """欢迎使用 ChatPDF Web UI,可以直接提问或上传文件后提问 """ | |
with gr.Blocks(css=block_css) as demo: | |
index_path, file_status, model_status = gr.State(""), gr.State(""), gr.State("") | |
gr.Markdown(webui_title) | |
with gr.Row(): | |
with gr.Column(scale=2): | |
chatbot = gr.Chatbot([[None, init_message], [None, None]], | |
elem_id="chat-box", | |
show_label=False).style(height=700) | |
query = gr.Textbox(show_label=False, | |
placeholder="请输入提问内容,按回车进行提交", | |
).style(container=False) | |
clear_btn = gr.Button('🔄Clear!', elem_id='clear').style(full_width=True) | |
with gr.Column(scale=1): | |
llm_model = gr.Radio(llm_model_dict_list, | |
label="LLM 模型", | |
value=list(llm_model_dict.keys())[0], | |
interactive=True) | |
embedding_model = gr.Radio(embedding_model_dict_list, | |
label="Embedding 模型", | |
value=embedding_model_dict_list[0], | |
interactive=True) | |
load_model_button = gr.Button("重新加载模型") | |
with gr.Tab("select"): | |
selectFile = gr.Dropdown( | |
file_list, | |
label="content file", | |
interactive=True, | |
value=file_list[0] if len(file_list) > 0 else None | |
) | |
with gr.Tab("upload"): | |
file = gr.File( | |
label="content file", | |
file_types=['.txt', '.md', '.docx', '.pdf'] | |
) | |
load_file_button = gr.Button("加载文件") | |
load_model_button.click( | |
reinit_model, | |
show_progress=True, | |
inputs=[llm_model, embedding_model, chatbot], | |
outputs=chatbot | |
) | |
# 将上传的文件保存到content文件夹下,并更新下拉框 | |
file.upload(upload_file, inputs=file, outputs=selectFile) | |
load_file_button.click( | |
get_vector_store, | |
show_progress=True, | |
inputs=[selectFile, chatbot], | |
outputs=[index_path, chatbot], | |
) | |
query.submit( | |
get_answer, | |
[query, index_path, chatbot], | |
[chatbot, query], | |
) | |
clear_btn.click(reset_chat, [chatbot, query], [chatbot, query]) | |
demo.queue(concurrency_count=3).launch( | |
server_name='0.0.0.0', share=False, inbrowser=False | |
) | |