Spaces:
Paused
Paused
from dataclasses import dataclass, field | |
from typing import Optional | |
class ModelArguments: | |
""" | |
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. | |
""" | |
model_name_or_path: str = field( | |
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} | |
) | |
ptuning_checkpoint: str = field( | |
default=None, metadata={"help": "Path to p-tuning v2 checkpoints"} | |
) | |
config_name: Optional[str] = field( | |
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} | |
) | |
tokenizer_name: Optional[str] = field( | |
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} | |
) | |
cache_dir: Optional[str] = field( | |
default=None, | |
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"}, | |
) | |
use_fast_tokenizer: bool = field( | |
default=True, | |
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, | |
) | |
model_revision: str = field( | |
default="main", | |
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, | |
) | |
use_auth_token: bool = field( | |
default=False, | |
metadata={ | |
"help": ( | |
"Will use the token generated when running `huggingface-cli login` (necessary to use this script " | |
"with private models)." | |
) | |
}, | |
) | |
resize_position_embeddings: Optional[bool] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"Whether to automatically resize the position embeddings if `max_source_length` exceeds " | |
"the model's position embeddings." | |
) | |
}, | |
) | |
quantization_bit: Optional[int] = field( | |
default=None | |
) | |
pre_seq_len: Optional[int] = field( | |
default=None | |
) | |
prefix_projection: bool = field( | |
default=False | |
) | |
class DataTrainingArguments: | |
""" | |
Arguments pertaining to what data we are going to input our model for training and eval. | |
""" | |
train_file: Optional[str] = field( | |
default=None, metadata={"help": "The input training data file (a jsonlines or csv file)."} | |
) | |
max_seq_length: Optional[int] = field( | |
default=2048, | |
metadata={ | |
"help": ( | |
"The maximum total input sequence length after tokenization. Sequences longer " | |
"than this will be truncated." | |
) | |
}, | |
) | |
max_source_length: Optional[int] = field( | |
default=1024, | |
metadata={ | |
"help": ( | |
"The maximum total input sequence length after tokenization. Sequences longer " | |
"than this will be truncated, sequences shorter will be padded." | |
) | |
}, | |
) | |
max_target_length: Optional[int] = field( | |
default=128, | |
metadata={ | |
"help": ( | |
"The maximum total sequence length for target text after tokenization. Sequences longer " | |
"than this will be truncated, sequences shorter will be padded." | |
) | |
}, | |
) | |
train_format: str = field( | |
default=None, metadata={"help": "The format of the training data file (mulit-turn or input-output)"}, | |
) | |
overwrite_cache: bool = field( | |
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} | |
) | |
preprocessing_num_workers: Optional[int] = field( | |
default=None, | |
metadata={"help": "The number of processes to use for the preprocessing."}, | |
) | |
max_seq_length: Optional[int] = field( | |
default=1024, | |
metadata={ | |
"help": ( | |
"The maximum total input sequence length after tokenization. Sequences longer " | |
"than this will be truncated, sequences shorter will be padded." | |
) | |
}, | |
) | |
pad_to_max_length: bool = field( | |
default=False, | |
metadata={ | |
"help": ( | |
"Whether to pad all samples to model maximum sentence length. " | |
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More " | |
"efficient on GPU but very bad for TPU." | |
) | |
}, | |
) | |
max_train_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"For debugging purposes or quicker training, truncate the number of training examples to this " | |
"value if set." | |
) | |
}, | |
) | |
def __post_init__(self): | |
extension = self.train_file.split(".")[-1] | |
assert extension in {"jsonl", "json"}, "`train_file` should be a jsonl or a json file." | |
assert self.train_format in {"multi-turn", "input-output"} |