|
import os, sys |
|
import tempfile |
|
import gradio as gr |
|
from src.gradio_demo import SadTalker |
|
|
|
from huggingface_hub import snapshot_download |
|
|
|
import torch |
|
import librosa |
|
from scipy.io.wavfile import write |
|
from transformers import WavLMModel |
|
|
|
import utils |
|
from models import SynthesizerTrn |
|
from mel_processing import mel_spectrogram_torch |
|
from speaker_encoder.voice_encoder import SpeakerEncoder |
|
|
|
import time |
|
from textwrap import dedent |
|
|
|
import mdtex2html |
|
from loguru import logger |
|
from transformers import AutoModel, AutoTokenizer |
|
|
|
from tts_voice import tts_order_voice |
|
import edge_tts |
|
import tempfile |
|
import anyio |
|
import asyncio |
|
|
|
|
|
def get_source_image(image): |
|
return image |
|
|
|
try: |
|
import webui |
|
in_webui = True |
|
except: |
|
in_webui = False |
|
|
|
|
|
def toggle_audio_file(choice): |
|
if choice == False: |
|
return gr.update(visible=True), gr.update(visible=False) |
|
else: |
|
return gr.update(visible=False), gr.update(visible=True) |
|
|
|
def ref_video_fn(path_of_ref_video): |
|
if path_of_ref_video is not None: |
|
return gr.update(value=True) |
|
else: |
|
return gr.update(value=False) |
|
|
|
def download_model(): |
|
REPO_ID = 'vinthony/SadTalker-V002rc' |
|
snapshot_download(repo_id=REPO_ID, local_dir='./checkpoints', local_dir_use_symlinks=True) |
|
|
|
def sadtalker_demo(): |
|
|
|
download_model() |
|
|
|
sad_talker = SadTalker(lazy_load=True) |
|
|
|
|
|
download_model() |
|
sad_talker = SadTalker(lazy_load=True) |
|
|
|
|
|
|
|
|
|
''' |
|
def get_wavlm(): |
|
os.system('gdown https://drive.google.com/uc?id=12-cB34qCTvByWT-QtOcZaqwwO21FLSqU') |
|
shutil.move('WavLM-Large.pt', 'wavlm') |
|
''' |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
smodel = SpeakerEncoder('speaker_encoder/ckpt/pretrained_bak_5805000.pt') |
|
|
|
print("Loading FreeVC(24k)...") |
|
hps = utils.get_hparams_from_file("configs/freevc-24.json") |
|
freevc_24 = SynthesizerTrn( |
|
hps.data.filter_length // 2 + 1, |
|
hps.train.segment_size // hps.data.hop_length, |
|
**hps.model).to(device) |
|
_ = freevc_24.eval() |
|
_ = utils.load_checkpoint("checkpoint/freevc-24.pth", freevc_24, None) |
|
|
|
print("Loading WavLM for content...") |
|
cmodel = WavLMModel.from_pretrained("microsoft/wavlm-large").to(device) |
|
|
|
def convert(model, src, tgt): |
|
with torch.no_grad(): |
|
|
|
wav_tgt, _ = librosa.load(tgt, sr=hps.data.sampling_rate) |
|
wav_tgt, _ = librosa.effects.trim(wav_tgt, top_db=20) |
|
if model == "FreeVC" or model == "FreeVC (24kHz)": |
|
g_tgt = smodel.embed_utterance(wav_tgt) |
|
g_tgt = torch.from_numpy(g_tgt).unsqueeze(0).to(device) |
|
else: |
|
wav_tgt = torch.from_numpy(wav_tgt).unsqueeze(0).to(device) |
|
mel_tgt = mel_spectrogram_torch( |
|
wav_tgt, |
|
hps.data.filter_length, |
|
hps.data.n_mel_channels, |
|
hps.data.sampling_rate, |
|
hps.data.hop_length, |
|
hps.data.win_length, |
|
hps.data.mel_fmin, |
|
hps.data.mel_fmax |
|
) |
|
|
|
wav_src, _ = librosa.load(src, sr=hps.data.sampling_rate) |
|
wav_src = torch.from_numpy(wav_src).unsqueeze(0).to(device) |
|
c = cmodel(wav_src).last_hidden_state.transpose(1, 2).to(device) |
|
|
|
if model == "FreeVC": |
|
audio = freevc.infer(c, g=g_tgt) |
|
elif model == "FreeVC-s": |
|
audio = freevc_s.infer(c, mel=mel_tgt) |
|
else: |
|
audio = freevc_24.infer(c, g=g_tgt) |
|
audio = audio[0][0].data.cpu().float().numpy() |
|
if model == "FreeVC" or model == "FreeVC-s": |
|
write("out.wav", hps.data.sampling_rate, audio) |
|
else: |
|
write("out.wav", 24000, audio) |
|
out = "out.wav" |
|
return out |
|
|
|
|
|
|
|
|
|
|
|
tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices()) |
|
voices = [f"{v['ShortName']}-{v['Gender']}" for v in tts_voice_list] |
|
|
|
|
|
os.environ["TZ"] = "Asia/Shanghai" |
|
try: |
|
time.tzset() |
|
except Exception: |
|
|
|
logger.warning("Windows, cant run time.tzset()") |
|
|
|
|
|
model_name = "THUDM/chatglm2-6b-int4" |
|
|
|
RETRY_FLAG = False |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
has_cuda = torch.cuda.is_available() |
|
|
|
|
|
|
|
if has_cuda: |
|
model_glm = ( |
|
AutoModel.from_pretrained(model_name, trust_remote_code=True).cuda().half() |
|
) |
|
else: |
|
model_glm = AutoModel.from_pretrained( |
|
model_name, trust_remote_code=True |
|
).float() |
|
|
|
model_glm = model_glm.eval() |
|
|
|
_ = """Override Chatbot.postprocess""" |
|
|
|
|
|
def postprocess(self, y): |
|
if y is None: |
|
return [] |
|
for i, (message, response) in enumerate(y): |
|
y[i] = ( |
|
None if message is None else mdtex2html.convert((message)), |
|
None if response is None else mdtex2html.convert(response), |
|
) |
|
return y |
|
|
|
|
|
gr.Chatbot.postprocess = postprocess |
|
|
|
|
|
def parse_text(text): |
|
"""copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/""" |
|
lines = text.split("\n") |
|
lines = [line for line in lines if line != ""] |
|
count = 0 |
|
for i, line in enumerate(lines): |
|
if "```" in line: |
|
count += 1 |
|
items = line.split("`") |
|
if count % 2 == 1: |
|
lines[i] = f'<pre><code class="language-{items[-1]}">' |
|
else: |
|
lines[i] = "<br></code></pre>" |
|
else: |
|
if i > 0: |
|
if count % 2 == 1: |
|
line = line.replace("`", r"\`") |
|
line = line.replace("<", "<") |
|
line = line.replace(">", ">") |
|
line = line.replace(" ", " ") |
|
line = line.replace("*", "*") |
|
line = line.replace("_", "_") |
|
line = line.replace("-", "-") |
|
line = line.replace(".", ".") |
|
line = line.replace("!", "!") |
|
line = line.replace("(", "(") |
|
line = line.replace(")", ")") |
|
line = line.replace("$", "$") |
|
lines[i] = "<br>" + line |
|
text = "".join(lines) |
|
return text |
|
|
|
|
|
def predict( |
|
RETRY_FLAG, input, chatbot, max_length, top_p, temperature, history, past_key_values |
|
): |
|
try: |
|
chatbot.append((parse_text(input), "")) |
|
except Exception as exc: |
|
logger.error(exc) |
|
logger.debug(f"{chatbot=}") |
|
_ = """ |
|
if chatbot: |
|
chatbot[-1] = (parse_text(input), str(exc)) |
|
yield chatbot, history, past_key_values |
|
# """ |
|
yield chatbot, history, past_key_values |
|
|
|
for response, history, past_key_values in model_glm.stream_chat( |
|
tokenizer, |
|
input, |
|
history, |
|
past_key_values=past_key_values, |
|
return_past_key_values=True, |
|
max_length=max_length, |
|
top_p=top_p, |
|
temperature=temperature, |
|
): |
|
chatbot[-1] = (parse_text(input), parse_text(response)) |
|
|
|
|
|
yield chatbot, history, past_key_values, parse_text(response) |
|
|
|
|
|
def trans_api(input, max_length=4096, top_p=0.8, temperature=0.2): |
|
if max_length < 10: |
|
max_length = 4096 |
|
if top_p < 0.1 or top_p > 1: |
|
top_p = 0.85 |
|
if temperature <= 0 or temperature > 1: |
|
temperature = 0.01 |
|
try: |
|
res, _ = model_glm.chat( |
|
tokenizer, |
|
input, |
|
history=[], |
|
past_key_values=None, |
|
max_length=max_length, |
|
top_p=top_p, |
|
temperature=temperature, |
|
) |
|
|
|
except Exception as exc: |
|
logger.error(f"{exc=}") |
|
res = str(exc) |
|
|
|
return res |
|
|
|
|
|
def reset_user_input(): |
|
return gr.update(value="") |
|
|
|
|
|
def reset_state(): |
|
return [], [], None, "" |
|
|
|
|
|
|
|
def delete_last_turn(chat, history): |
|
if chat and history: |
|
chat.pop(-1) |
|
history.pop(-1) |
|
return chat, history |
|
|
|
|
|
|
|
def retry_last_answer( |
|
user_input, chatbot, max_length, top_p, temperature, history, past_key_values |
|
): |
|
if chatbot and history: |
|
|
|
chatbot.pop(-1) |
|
|
|
RETRY_FLAG = True |
|
|
|
user_input = history[-1][0] |
|
|
|
history.pop(-1) |
|
|
|
yield from predict( |
|
RETRY_FLAG, |
|
user_input, |
|
chatbot, |
|
max_length, |
|
top_p, |
|
temperature, |
|
history, |
|
past_key_values, |
|
) |
|
|
|
|
|
|
|
def print(text): |
|
return text |
|
|
|
|
|
|
|
async def text_to_speech_edge(text, voice): |
|
|
|
communicate = edge_tts.Communicate(text, "-".join(voice.split('-')[:-1])) |
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file: |
|
tmp_path = tmp_file.name |
|
|
|
await communicate.save(tmp_path) |
|
|
|
return tmp_path |
|
|
|
|
|
with gr.Blocks(title="ChatGLM2-6B-int4", theme=gr.themes.Soft(text_size="sm"), analytics_enabled=False) as demo: |
|
gr.HTML("<center>" |
|
"<h1>📺💕🎶 - ChatGLM2 + Voice Cloning + SadTalker</h1>" |
|
"</center>") |
|
gr.Markdown("## <center>🥳 - Chat with any character you like through ChatGLM2-6B, FreeVC and SadTalker in real time</center>") |
|
gr.Markdown("## <center>⭐ - If you like the this app, please star my [GitHub repo](https://github.com/KevinWang676/ChatGLM2-Voice-Cloning)</center>") |
|
|
|
with gr.Tab("🍻 - ChatGLM2+VC"): |
|
with gr.Accordion("📒 Info", open=False): |
|
_ = f""" Some parameters of ChatGLM2: |
|
* Low temperature: responses will be more deterministic and focused; High temperature: responses more creative. |
|
* Suggested temperatures -- translation: up to 0.3; chatting: > 0.4 |
|
* Top P controls dynamic vocabulary selection based on context.\n |
|
If you would like to chat with a specific character, you can send a prompt like "please act as Elon Musk and chat with me" to ChatGLM2. |
|
|
|
""" |
|
gr.Markdown(dedent(_)) |
|
chatbot = gr.Chatbot(height=300) |
|
with gr.Row(): |
|
with gr.Column(scale=4): |
|
with gr.Column(scale=12): |
|
user_input = gr.Textbox( |
|
label="Chat with ChatGLM2 here", |
|
placeholder="Enter something here...", |
|
) |
|
RETRY_FLAG = gr.Checkbox(value=False, visible=False) |
|
with gr.Column(min_width=32, scale=1): |
|
with gr.Row(): |
|
submitBtn = gr.Button("Chat now", variant="primary") |
|
deleteBtn = gr.Button("Delete last turn", variant="secondary") |
|
retryBtn = gr.Button("Regenerate", variant="secondary") |
|
|
|
with gr.Accordion("🔧 Settings", open=False): |
|
with gr.Row(): |
|
emptyBtn = gr.Button("Clear History") |
|
max_length = gr.Slider( |
|
0, |
|
32768, |
|
value=8192, |
|
step=1.0, |
|
label="Maximum length", |
|
interactive=True, |
|
) |
|
top_p = gr.Slider( |
|
0, 1, value=0.85, step=0.01, label="Top P", interactive=True |
|
) |
|
temperature = gr.Slider( |
|
0.01, 1, value=0.95, step=0.01, label="Temperature", interactive=True |
|
) |
|
|
|
|
|
with gr.Row(): |
|
test1 = gr.Textbox(label="Response from ChatGLM2 (you can edit the content)", lines = 3) |
|
with gr.Column(): |
|
language = gr.Dropdown(choices=voices, value="en-US-AnaNeural-Female", label="Please select a voice") |
|
tts_btn = gr.Button("Generate using Edge-TTS", variant="primary") |
|
output_audio = gr.Audio(type="filepath", label="Audio generated by Edge-TTS", interactive=False) |
|
|
|
tts_btn.click(text_to_speech_edge, inputs=[test1, language], outputs=[output_audio]) |
|
|
|
with gr.Row(): |
|
model_choice = gr.Dropdown(choices=["FreeVC", "FreeVC-s", "FreeVC (24kHz)"], value="FreeVC (24kHz)", label="Model", visible=False) |
|
audio1 = output_audio |
|
audio2 = gr.Audio(label="Upload reference audio for voice cloning (~5s)", type='filepath') |
|
clone_btn = gr.Button("Generate using FreeVC", variant="primary") |
|
audio_cloned = gr.Audio(label="Generated audio in a custom voice", type='filepath') |
|
|
|
clone_btn.click(convert, inputs=[model_choice, audio1, audio2], outputs=[audio_cloned]) |
|
|
|
history = gr.State([]) |
|
past_key_values = gr.State(None) |
|
|
|
user_input.submit( |
|
predict, |
|
[ |
|
RETRY_FLAG, |
|
user_input, |
|
chatbot, |
|
max_length, |
|
top_p, |
|
temperature, |
|
history, |
|
past_key_values, |
|
], |
|
[chatbot, history, past_key_values, test1], |
|
show_progress="full", |
|
) |
|
submitBtn.click( |
|
predict, |
|
[ |
|
RETRY_FLAG, |
|
user_input, |
|
chatbot, |
|
max_length, |
|
top_p, |
|
temperature, |
|
history, |
|
past_key_values, |
|
], |
|
[chatbot, history, past_key_values, test1], |
|
show_progress="full", |
|
api_name="predict", |
|
) |
|
submitBtn.click(reset_user_input, [], [user_input]) |
|
|
|
emptyBtn.click( |
|
reset_state, outputs=[chatbot, history, past_key_values, test1], show_progress="full" |
|
) |
|
|
|
retryBtn.click( |
|
retry_last_answer, |
|
inputs=[ |
|
user_input, |
|
chatbot, |
|
max_length, |
|
top_p, |
|
temperature, |
|
history, |
|
past_key_values, |
|
], |
|
|
|
outputs=[chatbot, history, past_key_values, test1], |
|
) |
|
deleteBtn.click(delete_last_turn, [chatbot, history], [chatbot, history]) |
|
|
|
with gr.Accordion("📔 Prompts", open=False): |
|
etext = """In America, where cars are an important part of the national psyche, a decade ago people had suddenly started to drive less, which had not happened since the oil shocks of the 1970s. """ |
|
examples = gr.Examples( |
|
examples=[ |
|
["Explain the plot of Cinderella in a sentence."], |
|
[ |
|
"How long does it take to become proficient in French, and what are the best methods for retaining information?" |
|
], |
|
["What are some common mistakes to avoid when writing code?"], |
|
["Build a prompt to generate a beautiful portrait of a horse"], |
|
["Suggest four metaphors to describe the benefits of AI"], |
|
["Write a pop song about leaving home for the sandy beaches."], |
|
["Write a summary demonstrating my ability to tame lions"], |
|
["鲁迅和周树人什么关系"], |
|
["从前有一头牛,这头牛后面有什么?"], |
|
["正无穷大加一大于正无穷大吗?"], |
|
["正无穷大加正无穷大大于正无穷大吗?"], |
|
["-2的平方根等于什么"], |
|
["树上有5只鸟,猎人开枪打死了一只。树上还有几只鸟?"], |
|
["树上有11只鸟,猎人开枪打死了一只。树上还有几只鸟?提示:需考虑鸟可能受惊吓飞走。"], |
|
["鲁迅和周树人什么关系 用英文回答"], |
|
["以红楼梦的行文风格写一张委婉的请假条。不少于320字。"], |
|
[f"{etext} 翻成中文,列出3个版本"], |
|
[f"{etext} \n 翻成中文,保留原意,但使用文学性的语言。不要写解释。列出3个版本"], |
|
["js 判断一个数是不是质数"], |
|
["js 实现python 的 range(10)"], |
|
["js 实现python 的 [*(range(10)]"], |
|
["假定 1 + 2 = 4, 试求 7 + 8"], |
|
["Erkläre die Handlung von Cinderella in einem Satz."], |
|
["Erkläre die Handlung von Cinderella in einem Satz. Auf Deutsch"], |
|
], |
|
inputs=[user_input], |
|
examples_per_page=30, |
|
) |
|
|
|
with gr.Accordion("For Chat/Translation API", open=False, visible=False): |
|
input_text = gr.Text() |
|
tr_btn = gr.Button("Go", variant="primary") |
|
out_text = gr.Text() |
|
tr_btn.click( |
|
trans_api, |
|
[input_text, max_length, top_p, temperature], |
|
out_text, |
|
|
|
api_name="tr", |
|
) |
|
_ = """ |
|
input_text.submit( |
|
trans_api, |
|
[input_text, max_length, top_p, temperature], |
|
out_text, |
|
show_progress="full", |
|
api_name="tr1", |
|
) |
|
# """ |
|
|
|
with gr.Tab("📺 - SadTalker"): |
|
with gr.Row().style(equal_height=False): |
|
with gr.Column(variant='panel'): |
|
with gr.Tabs(elem_id="sadtalker_source_image"): |
|
with gr.TabItem('Source image'): |
|
with gr.Row(): |
|
source_image = gr.Image(label="Please upload an image here", source="upload", type="filepath", elem_id="img2img_image").style(width=512) |
|
|
|
|
|
with gr.Tabs(elem_id="sadtalker_driven_audio"): |
|
with gr.TabItem('💡You can also download the generated video if you want'): |
|
|
|
with gr.Row(): |
|
driven_audio = audio_cloned |
|
driven_audio_no = gr.Audio(label="Use IDLE mode, no audio is required", source="upload", type="filepath", visible=False) |
|
|
|
with gr.Column(): |
|
use_idle_mode = gr.Checkbox(label="Use Idle Animation", visible=False) |
|
length_of_audio = gr.Number(value=5, label="The length(seconds) of the generated video.", visible=False) |
|
use_idle_mode.change(toggle_audio_file, inputs=use_idle_mode, outputs=[driven_audio, driven_audio_no]) |
|
|
|
with gr.Row(): |
|
ref_video = gr.Video(label="Reference Video", source="upload", type="filepath", elem_id="vidref", visible=False).style(width=512) |
|
|
|
with gr.Column(): |
|
use_ref_video = gr.Checkbox(label="Use Reference Video", visible=False) |
|
ref_info = gr.Radio(['pose', 'blink','pose+blink', 'all'], value='pose', label='Reference Video',info="How to borrow from reference Video?((fully transfer, aka, video driving mode))", visible=False) |
|
|
|
ref_video.change(ref_video_fn, inputs=ref_video, outputs=[use_ref_video]) |
|
|
|
|
|
with gr.Column(variant='panel'): |
|
with gr.Tabs(elem_id="sadtalker_checkbox"): |
|
with gr.TabItem('🔧 Settings'): |
|
with gr.Column(variant='panel'): |
|
|
|
|
|
with gr.Row(): |
|
pose_style = gr.Slider(minimum=0, maximum=45, step=1, label="Pose style", value=0, visible=False) |
|
exp_weight = gr.Slider(minimum=0, maximum=3, step=0.1, label="expression scale", value=1, visible=False) |
|
blink_every = gr.Checkbox(label="use eye blink", value=True, visible=False) |
|
|
|
with gr.Row(): |
|
size_of_image = gr.Radio([256, 512], value=256, label='face model resolution', info="use 256/512 model?", visible=False) |
|
preprocess_type = gr.Radio(['crop', 'full'], value='crop', label='How to handle the input image?', info="crop: resize the image; full: not resize") |
|
|
|
with gr.Row(): |
|
is_still_mode = gr.Checkbox(label="Still mode (fewer head motion)", value=True) |
|
facerender = gr.Radio(['facevid2vid','pirender'], value='facevid2vid', label='facerender', info="which face render?", visible=False) |
|
|
|
with gr.Row(): |
|
batch_size = gr.Slider(label="Batch size in generation", step=1, maximum=32, value=2) |
|
enhancer = gr.Checkbox(label="GFPGAN as Face enhancer", value=True, visible=False) |
|
|
|
submit = gr.Button('Start video chat now', elem_id="sadtalker_generate", variant='primary') |
|
|
|
with gr.Tabs(elem_id="sadtalker_genearted"): |
|
gen_video = gr.Video(label="Generated video", format="mp4").style(width=256) |
|
|
|
|
|
|
|
submit.click( |
|
fn=sad_talker.test, |
|
inputs=[source_image, |
|
driven_audio, |
|
preprocess_type, |
|
is_still_mode, |
|
enhancer, |
|
batch_size, |
|
size_of_image, |
|
pose_style, |
|
facerender, |
|
exp_weight, |
|
use_ref_video, |
|
ref_video, |
|
ref_info, |
|
use_idle_mode, |
|
length_of_audio, |
|
blink_every |
|
], |
|
outputs=[gen_video] |
|
) |
|
gr.Markdown("### <center>❗ Please do not generate content that could infringe upon the rights or cause harm to individuals or organizations.</center>") |
|
gr.Markdown("<center>💡 - How to use this app:After sending your questions to ChatGLM2, click “Chat now”, “Generate using Edge-TTS”, “Generate using FreeVC” and “Start video chat now” in turn.</center>") |
|
|
|
demo.queue().launch(show_error=True, debug=True) |
|
|