|
import sys, os |
|
|
|
if sys.platform == "darwin": |
|
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1" |
|
|
|
import logging |
|
|
|
logging.getLogger("numba").setLevel(logging.WARNING) |
|
logging.getLogger("markdown_it").setLevel(logging.WARNING) |
|
logging.getLogger("urllib3").setLevel(logging.WARNING) |
|
logging.getLogger("matplotlib").setLevel(logging.WARNING) |
|
|
|
logging.basicConfig(level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s") |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
import torch |
|
import argparse |
|
import commons |
|
import utils |
|
from models import SynthesizerTrn |
|
from text.symbols import symbols |
|
from text import cleaned_text_to_sequence, get_bert |
|
from text.cleaner import clean_text |
|
import gradio as gr |
|
import webbrowser |
|
|
|
|
|
net_g = None |
|
|
|
|
|
def get_text(text, language_str, hps): |
|
norm_text, phone, tone, word2ph = clean_text(text, language_str) |
|
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str) |
|
|
|
if hps.data.add_blank: |
|
phone = commons.intersperse(phone, 0) |
|
tone = commons.intersperse(tone, 0) |
|
language = commons.intersperse(language, 0) |
|
for i in range(len(word2ph)): |
|
word2ph[i] = word2ph[i] * 2 |
|
word2ph[0] += 1 |
|
bert = get_bert(norm_text, word2ph, language_str) |
|
del word2ph |
|
|
|
assert bert.shape[-1] == len(phone) |
|
|
|
phone = torch.LongTensor(phone) |
|
tone = torch.LongTensor(tone) |
|
language = torch.LongTensor(language) |
|
|
|
return bert, phone, tone, language |
|
|
|
def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid): |
|
global net_g |
|
bert, phones, tones, lang_ids = get_text(text, "ZH", hps) |
|
with torch.no_grad(): |
|
x_tst=phones.to(device).unsqueeze(0) |
|
tones=tones.to(device).unsqueeze(0) |
|
lang_ids=lang_ids.to(device).unsqueeze(0) |
|
bert = bert.to(device).unsqueeze(0) |
|
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device) |
|
del phones |
|
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device) |
|
audio = net_g.infer(x_tst, x_tst_lengths, speakers, tones, lang_ids, bert, sdp_ratio=sdp_ratio |
|
, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale)[0][0,0].data.cpu().float().numpy() |
|
del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers |
|
return audio |
|
|
|
def tts_fn(text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale): |
|
with torch.no_grad(): |
|
audio = infer(text, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale, sid=speaker) |
|
return "Success", (hps.data.sampling_rate, audio) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--model_dir", default="./logs/OUTPUT_MODEL/G_13900.pth", help="path of your model") |
|
parser.add_argument("--config_dir", default="./configs/config.json", help="path of your config file") |
|
parser.add_argument("--share", default=False, help="make link public") |
|
parser.add_argument("-d", "--debug", action="store_true", help="enable DEBUG-LEVEL log") |
|
|
|
args = parser.parse_args() |
|
if args.debug: |
|
logger.info("Enable DEBUG-LEVEL log") |
|
logging.basicConfig(level=logging.DEBUG) |
|
hps = utils.get_hparams_from_file(args.config_dir) |
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
''' |
|
device = ( |
|
"cuda:0" |
|
if torch.cuda.is_available() |
|
else ( |
|
"mps" |
|
if sys.platform == "darwin" and torch.backends.mps.is_available() |
|
else "cpu" |
|
) |
|
) |
|
''' |
|
net_g = SynthesizerTrn( |
|
len(symbols), |
|
hps.data.filter_length // 2 + 1, |
|
hps.train.segment_size // hps.data.hop_length, |
|
n_speakers=hps.data.n_speakers, |
|
**hps.model).to(device) |
|
_ = net_g.eval() |
|
|
|
_ = utils.load_checkpoint(args.model_dir, net_g, None, skip_optimizer=True) |
|
|
|
speaker_ids = hps.data.spk2id |
|
speakers = list(speaker_ids.keys()) |
|
with gr.Blocks() as app: |
|
with gr.Row(): |
|
with gr.Column(): |
|
text = gr.TextArea(label="Text", placeholder="Input Text Here", |
|
value="那是流萤吗,是明灭迷离,天真绮丽的憧憬。那是尘埃吧,是虚无纷飞,终将落地的谎言。") |
|
speaker = gr.Dropdown(choices=speakers, value=speakers[0], label='Speaker') |
|
sdp_ratio = gr.Slider(minimum=0, maximum=1, value=0.2, step=0.1, label='语调变化') |
|
noise_scale = gr.Slider(minimum=0.1, maximum=1.5, value=0.6, step=0.1, label='感情变化') |
|
noise_scale_w = gr.Slider(minimum=0.1, maximum=1.4, value=0.8, step=0.1, label='音节发音长度变化') |
|
length_scale = gr.Slider(minimum=0.1, maximum=2, value=1, step=0.1, label='语速') |
|
btn = gr.Button("开启AI语音之旅吧!", variant="primary") |
|
with gr.Column(): |
|
text_output = gr.Textbox(label="Message") |
|
audio_output = gr.Audio(label="Output Audio") |
|
|
|
btn.click(tts_fn, |
|
inputs=[text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale], |
|
outputs=[text_output, audio_output]) |
|
|
|
|
|
|
|
|
|
app.launch(show_error=True) |
|
|