Spaces:
Running
Running
import time | |
import os | |
import random | |
import numpy as np | |
import torch | |
import torch.utils.data | |
import torchaudio | |
import commons | |
from mel_processing import spectrogram_torch, mel_spectrogram_torch, spec_to_mel_torch | |
from utils import load_wav_to_torch, load_filepaths_and_text | |
from text import cleaned_text_to_sequence, get_bert | |
"""Multi speaker version""" | |
class TextAudioSpeakerLoader(torch.utils.data.Dataset): | |
""" | |
1) loads audio, speaker_id, text pairs | |
2) normalizes text and converts them to sequences of integers | |
3) computes spectrograms from audio files. | |
""" | |
def __init__(self, audiopaths_sid_text, hparams): | |
self.audiopaths_sid_text = load_filepaths_and_text(audiopaths_sid_text) | |
self.max_wav_value = hparams.max_wav_value | |
self.sampling_rate = hparams.sampling_rate | |
self.filter_length = hparams.filter_length | |
self.hop_length = hparams.hop_length | |
self.win_length = hparams.win_length | |
self.sampling_rate = hparams.sampling_rate | |
self.spk_map = hparams.spk2id | |
self.hparams = hparams | |
self.use_mel_spec_posterior = getattr(hparams, "use_mel_posterior_encoder", False) | |
if self.use_mel_spec_posterior: | |
self.n_mel_channels = getattr(hparams, "n_mel_channels", 80) | |
self.cleaned_text = getattr(hparams, "cleaned_text", False) | |
self.add_blank = hparams.add_blank | |
self.min_text_len = getattr(hparams, "min_text_len", 1) | |
self.max_text_len = getattr(hparams, "max_text_len", 300) | |
random.seed(1234) | |
random.shuffle(self.audiopaths_sid_text) | |
self._filter() | |
def _filter(self): | |
""" | |
Filter text & store spec lengths | |
""" | |
# Store spectrogram lengths for Bucketing | |
# wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2) | |
# spec_length = wav_length // hop_length | |
audiopaths_sid_text_new = [] | |
lengths = [] | |
skipped = 0 | |
for _id, spk, language, text, phones, tone, word2ph in self.audiopaths_sid_text: | |
audiopath = f'{_id}' | |
if self.min_text_len <= len(phones) and len(phones) <= self.max_text_len: | |
phones = phones.split(" ") | |
tone = [int(i) for i in tone.split(" ")] | |
word2ph = [int(i) for i in word2ph.split(" ")] | |
audiopaths_sid_text_new.append([audiopath, spk, language, text, phones, tone, word2ph]) | |
lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length)) | |
else: | |
skipped += 1 | |
print("skipped: ", skipped, ", total: ", len(self.audiopaths_sid_text)) | |
self.audiopaths_sid_text = audiopaths_sid_text_new | |
self.lengths = lengths | |
def get_audio_text_speaker_pair(self, audiopath_sid_text): | |
# separate filename, speaker_id and text | |
audiopath, sid, language, text, phones, tone, word2ph = audiopath_sid_text | |
bert, phones, tone, language = self.get_text(text, word2ph, phones, tone, language, audiopath) | |
spec, wav = self.get_audio(audiopath) | |
sid = torch.LongTensor([int(self.spk_map[sid])]) | |
return (phones, spec, wav, sid, tone, language, bert) | |
def get_audio(self, filename): | |
audio_norm, sampling_rate = torchaudio.load(filename, frame_offset=0, num_frames=-1, normalize=True, channels_first=True) | |
''' | |
audio, sampling_rate = load_wav_to_torch(filename) | |
if sampling_rate != self.sampling_rate: | |
raise ValueError("{} {} SR doesn't match target {} SR".format( | |
sampling_rate, self.sampling_rate)) | |
audio_norm = audio / self.max_wav_value | |
audio_norm = audio_norm.unsqueeze(0) | |
''' | |
spec_filename = filename.replace(".wav", ".spec.pt") | |
if self.use_mel_spec_posterior: | |
spec_filename = spec_filename.replace(".spec.pt", ".mel.pt") | |
if os.path.exists(spec_filename): | |
spec = torch.load(spec_filename) | |
else: | |
if self.use_mel_spec_posterior: | |
# if os.path.exists(filename.replace(".wav", ".spec.pt")): | |
# # spec, n_fft, num_mels, sampling_rate, fmin, fmax | |
# spec = spec_to_mel_torch( | |
# torch.load(filename.replace(".wav", ".spec.pt")), | |
# self.filter_length, self.n_mel_channels, self.sampling_rate, | |
# self.hparams.mel_fmin, self.hparams.mel_fmax) | |
spec = mel_spectrogram_torch(audio_norm, self.filter_length, | |
self.n_mel_channels, self.sampling_rate, self.hop_length, | |
self.win_length, self.hparams.mel_fmin, self.hparams.mel_fmax, center=False) | |
else: | |
spec = spectrogram_torch(audio_norm, self.filter_length, | |
self.sampling_rate, self.hop_length, self.win_length, | |
center=False) | |
spec = torch.squeeze(spec, 0) | |
torch.save(spec, spec_filename) | |
return spec, audio_norm | |
def get_text(self, text, word2ph, phone, tone, language_str, wav_path): | |
# print(text, word2ph,phone, tone, language_str) | |
pold = phone | |
w2pho = [i for i in word2ph] | |
word2ph = [i for i in word2ph] | |
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str) | |
pold2 = phone | |
if self.add_blank: | |
p1 = len(phone) | |
phone = commons.intersperse(phone, 0) | |
p2 = len(phone) | |
t1 = len(tone) | |
tone = commons.intersperse(tone, 0) | |
t2 = len(tone) | |
language = commons.intersperse(language, 0) | |
for i in range(len(word2ph)): | |
word2ph[i] = word2ph[i] * 2 | |
word2ph[0] += 1 | |
bert_path = wav_path.replace(".wav", ".bert.pt") | |
try: | |
bert = torch.load(bert_path) | |
assert bert.shape[-1] == len(phone) | |
except: | |
bert = get_bert(text, word2ph, language_str) | |
torch.save(bert, bert_path) | |
#print(bert.shape[-1], bert_path, text, pold) | |
assert bert.shape[-1] == len(phone) | |
assert bert.shape[-1] == len(phone), ( | |
bert.shape, len(phone), sum(word2ph), p1, p2, t1, t2, pold, pold2, word2ph, text, w2pho) | |
phone = torch.LongTensor(phone) | |
tone = torch.LongTensor(tone) | |
language = torch.LongTensor(language) | |
return bert, phone, tone, language | |
def get_sid(self, sid): | |
sid = torch.LongTensor([int(sid)]) | |
return sid | |
def __getitem__(self, index): | |
return self.get_audio_text_speaker_pair(self.audiopaths_sid_text[index]) | |
def __len__(self): | |
return len(self.audiopaths_sid_text) | |
class TextAudioSpeakerCollate(): | |
""" Zero-pads model inputs and targets | |
""" | |
def __init__(self, return_ids=False): | |
self.return_ids = return_ids | |
def __call__(self, batch): | |
"""Collate's training batch from normalized text, audio and speaker identities | |
PARAMS | |
------ | |
batch: [text_normalized, spec_normalized, wav_normalized, sid] | |
""" | |
# Right zero-pad all one-hot text sequences to max input length | |
_, ids_sorted_decreasing = torch.sort( | |
torch.LongTensor([x[1].size(1) for x in batch]), | |
dim=0, descending=True) | |
max_text_len = max([len(x[0]) for x in batch]) | |
max_spec_len = max([x[1].size(1) for x in batch]) | |
max_wav_len = max([x[2].size(1) for x in batch]) | |
text_lengths = torch.LongTensor(len(batch)) | |
spec_lengths = torch.LongTensor(len(batch)) | |
wav_lengths = torch.LongTensor(len(batch)) | |
sid = torch.LongTensor(len(batch)) | |
text_padded = torch.LongTensor(len(batch), max_text_len) | |
tone_padded = torch.LongTensor(len(batch), max_text_len) | |
language_padded = torch.LongTensor(len(batch), max_text_len) | |
bert_padded = torch.FloatTensor(len(batch), 1024, max_text_len) | |
spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len) | |
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len) | |
text_padded.zero_() | |
tone_padded.zero_() | |
language_padded.zero_() | |
spec_padded.zero_() | |
wav_padded.zero_() | |
bert_padded.zero_() | |
for i in range(len(ids_sorted_decreasing)): | |
row = batch[ids_sorted_decreasing[i]] | |
text = row[0] | |
text_padded[i, :text.size(0)] = text | |
text_lengths[i] = text.size(0) | |
spec = row[1] | |
spec_padded[i, :, :spec.size(1)] = spec | |
spec_lengths[i] = spec.size(1) | |
wav = row[2] | |
wav_padded[i, :, :wav.size(1)] = wav | |
wav_lengths[i] = wav.size(1) | |
sid[i] = row[3] | |
tone = row[4] | |
tone_padded[i, :tone.size(0)] = tone | |
language = row[5] | |
language_padded[i, :language.size(0)] = language | |
bert = row[6] | |
bert_padded[i, :, :bert.size(1)] = bert | |
return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, sid, tone_padded, language_padded, bert_padded | |
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler): | |
""" | |
Maintain similar input lengths in a batch. | |
Length groups are specified by boundaries. | |
Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}. | |
It removes samples which are not included in the boundaries. | |
Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded. | |
""" | |
def __init__(self, dataset, batch_size, boundaries, num_replicas=None, rank=None, shuffle=True): | |
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle) | |
self.lengths = dataset.lengths | |
self.batch_size = batch_size | |
self.boundaries = boundaries | |
self.buckets, self.num_samples_per_bucket = self._create_buckets() | |
self.total_size = sum(self.num_samples_per_bucket) | |
self.num_samples = self.total_size // self.num_replicas | |
def _create_buckets(self): | |
buckets = [[] for _ in range(len(self.boundaries) - 1)] | |
for i in range(len(self.lengths)): | |
length = self.lengths[i] | |
idx_bucket = self._bisect(length) | |
if idx_bucket != -1: | |
buckets[idx_bucket].append(i) | |
for i in range(len(buckets) - 1, 0, -1): | |
if len(buckets[i]) == 0: | |
buckets.pop(i) | |
self.boundaries.pop(i + 1) | |
num_samples_per_bucket = [] | |
for i in range(len(buckets)): | |
len_bucket = len(buckets[i]) | |
total_batch_size = self.num_replicas * self.batch_size | |
rem = (total_batch_size - (len_bucket % total_batch_size)) % total_batch_size | |
num_samples_per_bucket.append(len_bucket + rem) | |
return buckets, num_samples_per_bucket | |
def __iter__(self): | |
# deterministically shuffle based on epoch | |
g = torch.Generator() | |
g.manual_seed(self.epoch) | |
indices = [] | |
if self.shuffle: | |
for bucket in self.buckets: | |
indices.append(torch.randperm(len(bucket), generator=g).tolist()) | |
else: | |
for bucket in self.buckets: | |
indices.append(list(range(len(bucket)))) | |
batches = [] | |
for i in range(len(self.buckets)): | |
bucket = self.buckets[i] | |
len_bucket = len(bucket) | |
if (len_bucket == 0): | |
continue | |
ids_bucket = indices[i] | |
num_samples_bucket = self.num_samples_per_bucket[i] | |
# add extra samples to make it evenly divisible | |
rem = num_samples_bucket - len_bucket | |
ids_bucket = ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[:(rem % len_bucket)] | |
# subsample | |
ids_bucket = ids_bucket[self.rank::self.num_replicas] | |
# batching | |
for j in range(len(ids_bucket) // self.batch_size): | |
batch = [bucket[idx] for idx in ids_bucket[j * self.batch_size:(j + 1) * self.batch_size]] | |
batches.append(batch) | |
if self.shuffle: | |
batch_ids = torch.randperm(len(batches), generator=g).tolist() | |
batches = [batches[i] for i in batch_ids] | |
self.batches = batches | |
assert len(self.batches) * self.batch_size == self.num_samples | |
return iter(self.batches) | |
def _bisect(self, x, lo=0, hi=None): | |
if hi is None: | |
hi = len(self.boundaries) - 1 | |
if hi > lo: | |
mid = (hi + lo) // 2 | |
if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]: | |
return mid | |
elif x <= self.boundaries[mid]: | |
return self._bisect(x, lo, mid) | |
else: | |
return self._bisect(x, mid + 1, hi) | |
else: | |
return -1 | |
def __len__(self): | |
return self.num_samples // self.batch_size | |