kevinwang676
commited on
Commit
·
4ac3fe7
1
Parent(s):
bc3ff90
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,308 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
os.system("pip install git+https://github.com/suno-ai/bark.git")
|
4 |
+
|
5 |
+
from bark.generation import SUPPORTED_LANGS
|
6 |
+
from bark import SAMPLE_RATE, generate_audio
|
7 |
+
from scipy.io.wavfile import write as write_wav
|
8 |
+
from datetime import datetime
|
9 |
+
|
10 |
+
import shutil
|
11 |
+
import gradio as gr
|
12 |
+
|
13 |
+
import sys
|
14 |
+
|
15 |
+
import string
|
16 |
+
import time
|
17 |
+
import argparse
|
18 |
+
import json
|
19 |
+
|
20 |
+
import numpy as np
|
21 |
+
# import IPython
|
22 |
+
# from IPython.display import Audio
|
23 |
+
|
24 |
+
import torch
|
25 |
+
|
26 |
+
from TTS.tts.utils.synthesis import synthesis
|
27 |
+
from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols
|
28 |
+
try:
|
29 |
+
from TTS.utils.audio import AudioProcessor
|
30 |
+
except:
|
31 |
+
from TTS.utils.audio import AudioProcessor
|
32 |
+
|
33 |
+
|
34 |
+
from TTS.tts.models import setup_model
|
35 |
+
from TTS.config import load_config
|
36 |
+
from TTS.tts.models.vits import *
|
37 |
+
|
38 |
+
from TTS.tts.utils.speakers import SpeakerManager
|
39 |
+
from pydub import AudioSegment
|
40 |
+
|
41 |
+
# from google.colab import files
|
42 |
+
import librosa
|
43 |
+
|
44 |
+
from scipy.io.wavfile import write, read
|
45 |
+
|
46 |
+
import subprocess
|
47 |
+
|
48 |
+
'''
|
49 |
+
from google.colab import drive
|
50 |
+
drive.mount('/content/drive')
|
51 |
+
src_path = os.path.join(os.path.join(os.path.join(os.path.join(os.getcwd(), 'drive'), 'MyDrive'), 'Colab Notebooks'), 'best_model_latest.pth.tar')
|
52 |
+
dst_path = os.path.join(os.getcwd(), 'best_model.pth.tar')
|
53 |
+
shutil.copy(src_path, dst_path)
|
54 |
+
'''
|
55 |
+
|
56 |
+
TTS_PATH = "TTS/"
|
57 |
+
|
58 |
+
# add libraries into environment
|
59 |
+
sys.path.append(TTS_PATH) # set this if TTS is not installed globally
|
60 |
+
|
61 |
+
# Paths definition
|
62 |
+
|
63 |
+
OUT_PATH = 'out/'
|
64 |
+
|
65 |
+
# create output path
|
66 |
+
os.makedirs(OUT_PATH, exist_ok=True)
|
67 |
+
|
68 |
+
# model vars
|
69 |
+
MODEL_PATH = 'best_model.pth.tar'
|
70 |
+
CONFIG_PATH = 'config.json'
|
71 |
+
TTS_LANGUAGES = "language_ids.json"
|
72 |
+
TTS_SPEAKERS = "speakers.json"
|
73 |
+
USE_CUDA = torch.cuda.is_available()
|
74 |
+
|
75 |
+
# load the config
|
76 |
+
C = load_config(CONFIG_PATH)
|
77 |
+
|
78 |
+
# load the audio processor
|
79 |
+
ap = AudioProcessor(**C.audio)
|
80 |
+
|
81 |
+
speaker_embedding = None
|
82 |
+
|
83 |
+
C.model_args['d_vector_file'] = TTS_SPEAKERS
|
84 |
+
C.model_args['use_speaker_encoder_as_loss'] = False
|
85 |
+
|
86 |
+
model = setup_model(C)
|
87 |
+
model.language_manager.set_language_ids_from_file(TTS_LANGUAGES)
|
88 |
+
# print(model.language_manager.num_languages, model.embedded_language_dim)
|
89 |
+
# print(model.emb_l)
|
90 |
+
cp = torch.load(MODEL_PATH, map_location=torch.device('cpu'))
|
91 |
+
# remove speaker encoder
|
92 |
+
model_weights = cp['model'].copy()
|
93 |
+
for key in list(model_weights.keys()):
|
94 |
+
if "speaker_encoder" in key:
|
95 |
+
del model_weights[key]
|
96 |
+
|
97 |
+
model.load_state_dict(model_weights)
|
98 |
+
|
99 |
+
model.eval()
|
100 |
+
|
101 |
+
if USE_CUDA:
|
102 |
+
model = model.cuda()
|
103 |
+
|
104 |
+
# synthesize voice
|
105 |
+
use_griffin_lim = False
|
106 |
+
|
107 |
+
# Paths definition
|
108 |
+
|
109 |
+
CONFIG_SE_PATH = "config_se.json"
|
110 |
+
CHECKPOINT_SE_PATH = "SE_checkpoint.pth.tar"
|
111 |
+
|
112 |
+
# Load the Speaker encoder
|
113 |
+
|
114 |
+
SE_speaker_manager = SpeakerManager(encoder_model_path=CHECKPOINT_SE_PATH, encoder_config_path=CONFIG_SE_PATH, use_cuda=USE_CUDA)
|
115 |
+
|
116 |
+
# Define helper function
|
117 |
+
|
118 |
+
def compute_spec(ref_file):
|
119 |
+
y, sr = librosa.load(ref_file, sr=ap.sample_rate)
|
120 |
+
spec = ap.spectrogram(y)
|
121 |
+
spec = torch.FloatTensor(spec).unsqueeze(0)
|
122 |
+
return spec
|
123 |
+
|
124 |
+
|
125 |
+
def voice_conversion(ta, ra, da):
|
126 |
+
|
127 |
+
target_audio = 'target.wav'
|
128 |
+
reference_audio = 'reference.wav'
|
129 |
+
driving_audio = 'driving.wav'
|
130 |
+
|
131 |
+
write(target_audio, ta[0], ta[1])
|
132 |
+
write(reference_audio, ra[0], ra[1])
|
133 |
+
write(driving_audio, da[0], da[1])
|
134 |
+
|
135 |
+
# !ffmpeg-normalize $target_audio -nt rms -t=-27 -o $target_audio -ar 16000 -f
|
136 |
+
# !ffmpeg-normalize $reference_audio -nt rms -t=-27 -o $reference_audio -ar 16000 -f
|
137 |
+
# !ffmpeg-normalize $driving_audio -nt rms -t=-27 -o $driving_audio -ar 16000 -f
|
138 |
+
|
139 |
+
files = [target_audio, reference_audio, driving_audio]
|
140 |
+
|
141 |
+
for file in files:
|
142 |
+
subprocess.run(["ffmpeg-normalize", file, "-nt", "rms", "-t=-27", "-o", file, "-ar", "16000", "-f"])
|
143 |
+
|
144 |
+
# ta_ = read(target_audio)
|
145 |
+
|
146 |
+
target_emb = SE_speaker_manager.compute_d_vector_from_clip([target_audio])
|
147 |
+
target_emb = torch.FloatTensor(target_emb).unsqueeze(0)
|
148 |
+
|
149 |
+
driving_emb = SE_speaker_manager.compute_d_vector_from_clip([reference_audio])
|
150 |
+
driving_emb = torch.FloatTensor(driving_emb).unsqueeze(0)
|
151 |
+
|
152 |
+
# Convert the voice
|
153 |
+
|
154 |
+
driving_spec = compute_spec(driving_audio)
|
155 |
+
y_lengths = torch.tensor([driving_spec.size(-1)])
|
156 |
+
if USE_CUDA:
|
157 |
+
ref_wav_voc, _, _ = model.voice_conversion(driving_spec.cuda(), y_lengths.cuda(), driving_emb.cuda(), target_emb.cuda())
|
158 |
+
ref_wav_voc = ref_wav_voc.squeeze().cpu().detach().numpy()
|
159 |
+
else:
|
160 |
+
ref_wav_voc, _, _ = model.voice_conversion(driving_spec, y_lengths, driving_emb, target_emb)
|
161 |
+
ref_wav_voc = ref_wav_voc.squeeze().detach().numpy()
|
162 |
+
|
163 |
+
# print("Reference Audio after decoder:")
|
164 |
+
# IPython.display.display(Audio(ref_wav_voc, rate=ap.sample_rate))
|
165 |
+
|
166 |
+
return (ap.sample_rate, ref_wav_voc)
|
167 |
+
|
168 |
+
|
169 |
+
def generate_text_to_speech(text_prompt, selected_speaker, text_temp, waveform_temp):
|
170 |
+
audio_array = generate_audio(text_prompt, selected_speaker, text_temp, waveform_temp)
|
171 |
+
|
172 |
+
now = datetime.now()
|
173 |
+
date_str = now.strftime("%m-%d-%Y")
|
174 |
+
time_str = now.strftime("%H-%M-%S")
|
175 |
+
|
176 |
+
outputs_folder = os.path.join(os.getcwd(), "outputs")
|
177 |
+
if not os.path.exists(outputs_folder):
|
178 |
+
os.makedirs(outputs_folder)
|
179 |
+
|
180 |
+
sub_folder = os.path.join(outputs_folder, date_str)
|
181 |
+
if not os.path.exists(sub_folder):
|
182 |
+
os.makedirs(sub_folder)
|
183 |
+
|
184 |
+
file_name = f"audio_{time_str}.wav"
|
185 |
+
file_path = os.path.join(sub_folder, file_name)
|
186 |
+
write_wav(file_path, SAMPLE_RATE, audio_array)
|
187 |
+
|
188 |
+
return file_path
|
189 |
+
|
190 |
+
|
191 |
+
speakers_list = []
|
192 |
+
|
193 |
+
for lang, code in SUPPORTED_LANGS:
|
194 |
+
for n in range(10):
|
195 |
+
speakers_list.append(f"{code}_speaker_{n}")
|
196 |
+
|
197 |
+
with gr.Blocks() as demo:
|
198 |
+
gr.Markdown(
|
199 |
+
f""" # <center>🐶🎶🥳 - Bark with Voice Cloning</center>
|
200 |
+
|
201 |
+
### <center>🤗 - Powered by [Bark](https://huggingface.co/spaces/suno/bark) and [YourTTS](https://github.com/Edresson/YourTTS). Inspired by [bark-webui](https://github.com/makawy7/bark-webui).</center>
|
202 |
+
1. You can duplicate and use it with a GPU: <a href="https://huggingface.co/spaces/{os.getenv('SPACE_ID')}?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a>
|
203 |
+
2. First use Bark to generate audio from text and then use YourTTS to get new audio in a custom voice you like. Easy to use!
|
204 |
+
|
205 |
+
"""
|
206 |
+
)
|
207 |
+
|
208 |
+
with gr.Row().style(equal_height=True):
|
209 |
+
inp1 = gr.Textbox(label="Input Text", lines=4, placeholder="Enter text here...")
|
210 |
+
|
211 |
+
inp3 = gr.Slider(
|
212 |
+
0.1,
|
213 |
+
1.0,
|
214 |
+
value=0.7,
|
215 |
+
label="Generation Temperature",
|
216 |
+
info="1.0 more diverse, 0.1 more conservative",
|
217 |
+
)
|
218 |
+
|
219 |
+
inp4 = gr.Slider(
|
220 |
+
0.1, 1.0, value=0.7, label="Waveform Temperature", info="1.0 more diverse, 0.1 more conservative"
|
221 |
+
)
|
222 |
+
with gr.Row().style(equal_height=True):
|
223 |
+
|
224 |
+
inp2 = gr.Dropdown(speakers_list, value=speakers_list[0], label="Acoustic Prompt")
|
225 |
+
|
226 |
+
button = gr.Button("Generate using Bark")
|
227 |
+
|
228 |
+
out1 = gr.Audio(label="Generated Audio")
|
229 |
+
|
230 |
+
button.click(generate_text_to_speech, [inp1, inp2, inp3, inp4], [out1])
|
231 |
+
|
232 |
+
|
233 |
+
with gr.Row().style(equal_height=True):
|
234 |
+
inp5 = gr.Audio(label="Reference Audio for Voice Cloning")
|
235 |
+
inp6 = out1
|
236 |
+
inp7 = out1
|
237 |
+
|
238 |
+
btn = gr.Button("Generate using YourTTS")
|
239 |
+
out2 = gr.Audio(label="Generated Audio in a Custom Voice")
|
240 |
+
|
241 |
+
btn.click(voice_conversion, [inp5, inp6, inp7], [out2])
|
242 |
+
|
243 |
+
gr.Markdown(
|
244 |
+
""" ### <center>NOTE: Please do not generate any audio that is potentially harmful to any person or organization.</center>
|
245 |
+
|
246 |
+
"""
|
247 |
+
)
|
248 |
+
gr.Markdown(
|
249 |
+
"""
|
250 |
+
## 🌎 Foreign Language
|
251 |
+
Bark supports various languages out-of-the-box and automatically determines language from input text. \
|
252 |
+
When prompted with code-switched text, Bark will even attempt to employ the native accent for the respective languages in the same voice.
|
253 |
+
Try the prompt:
|
254 |
+
```
|
255 |
+
Buenos días Miguel. Tu colega piensa que tu alemán es extremadamente malo. But I suppose your english isn't terrible.
|
256 |
+
```
|
257 |
+
## 🤭 Non-Speech Sounds
|
258 |
+
Below is a list of some known non-speech sounds, but we are finding more every day. \
|
259 |
+
Please let us know if you find patterns that work particularly well on Discord!
|
260 |
+
* [laughter]
|
261 |
+
* [laughs]
|
262 |
+
* [sighs]
|
263 |
+
* [music]
|
264 |
+
* [gasps]
|
265 |
+
* [clears throat]
|
266 |
+
* — or ... for hesitations
|
267 |
+
* ♪ for song lyrics
|
268 |
+
* capitalization for emphasis of a word
|
269 |
+
* MAN/WOMAN: for bias towards speaker
|
270 |
+
Try the prompt:
|
271 |
+
```
|
272 |
+
" [clears throat] Hello, my name is Suno. And, uh — and I like pizza. [laughs] But I also have other interests such as... ♪ singing ♪."
|
273 |
+
```
|
274 |
+
## 🎶 Music
|
275 |
+
Bark can generate all types of audio, and, in principle, doesn't see a difference between speech and music. \
|
276 |
+
Sometimes Bark chooses to generate text as music, but you can help it out by adding music notes around your lyrics.
|
277 |
+
Try the prompt:
|
278 |
+
```
|
279 |
+
♪ In the jungle, the mighty jungle, the lion barks tonight ♪
|
280 |
+
```
|
281 |
+
## 🧬 Voice Cloning
|
282 |
+
Bark has the capability to fully clone voices - including tone, pitch, emotion and prosody. \
|
283 |
+
The model also attempts to preserve music, ambient noise, etc. from input audio. \
|
284 |
+
However, to mitigate misuse of this technology, we limit the audio history prompts to a limited set of Suno-provided, fully synthetic options to choose from.
|
285 |
+
## 👥 Speaker Prompts
|
286 |
+
You can provide certain speaker prompts such as NARRATOR, MAN, WOMAN, etc. \
|
287 |
+
Please note that these are not always respected, especially if a conflicting audio history prompt is given.
|
288 |
+
Try the prompt:
|
289 |
+
```
|
290 |
+
WOMAN: I would like an oatmilk latte please.
|
291 |
+
MAN: Wow, that's expensive!
|
292 |
+
```
|
293 |
+
## Details
|
294 |
+
Bark model by [Suno](https://suno.ai/), including official [code](https://github.com/suno-ai/bark) and model weights. \
|
295 |
+
Gradio demo supported by 🤗 Hugging Face. Bark is licensed under a non-commercial license: CC-BY 4.0 NC, see details on [GitHub](https://github.com/suno-ai/bark).
|
296 |
+
|
297 |
+
"""
|
298 |
+
)
|
299 |
+
|
300 |
+
|
301 |
+
gr.HTML('''
|
302 |
+
<div class="footer">
|
303 |
+
<p>🎶🖼️🎡 - It’s the intersection of technology and liberal arts that makes our hearts sing — Steve Jobs
|
304 |
+
</p>
|
305 |
+
</div>
|
306 |
+
''')
|
307 |
+
|
308 |
+
demo.queue().launch(show_error=True)
|