|
from bark.generation import load_codec_model, generate_text_semantic, grab_best_device |
|
from encodec.utils import convert_audio |
|
from bark.hubert.hubert_manager import HuBERTManager |
|
from bark.hubert.pre_kmeans_hubert import CustomHubert |
|
from bark.hubert.customtokenizer import CustomTokenizer |
|
|
|
import torchaudio |
|
import torch |
|
import os |
|
import gradio |
|
|
|
|
|
def clone_voice(audio_filepath, dest_filename, progress=gradio.Progress(track_tqdm=True)): |
|
|
|
|
|
|
|
use_gpu = not os.environ.get("BARK_FORCE_CPU", False) |
|
progress(0, desc="Loading Codec") |
|
model = load_codec_model(use_gpu=use_gpu) |
|
|
|
|
|
hubert_manager = HuBERTManager() |
|
hubert_manager.make_sure_hubert_installed() |
|
hubert_manager.make_sure_tokenizer_installed() |
|
|
|
|
|
|
|
|
|
|
|
device = grab_best_device(use_gpu) |
|
hubert_model = CustomHubert(checkpoint_path='./models/hubert/hubert.pt').to(device) |
|
|
|
|
|
tokenizer = CustomTokenizer.load_from_checkpoint('./models/hubert/en_tokenizer.pth').to(device) |
|
|
|
progress(0.25, desc="Converting WAV") |
|
|
|
|
|
wav, sr = torchaudio.load(audio_filepath) |
|
if wav.shape[0] == 2: |
|
wav = wav.mean(0, keepdim=True) |
|
|
|
wav = convert_audio(wav, sr, model.sample_rate, model.channels) |
|
wav = wav.to(device) |
|
progress(0.5, desc="Extracting codes") |
|
|
|
semantic_vectors = hubert_model.forward(wav, input_sample_hz=model.sample_rate) |
|
semantic_tokens = tokenizer.get_token(semantic_vectors) |
|
|
|
|
|
with torch.no_grad(): |
|
encoded_frames = model.encode(wav.unsqueeze(0)) |
|
codes = torch.cat([encoded[0] for encoded in encoded_frames], dim=-1).squeeze() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
codes = codes.cpu().numpy() |
|
|
|
semantic_tokens = semantic_tokens.cpu().numpy() |
|
|
|
import numpy as np |
|
output_path = dest_filename + '.npz' |
|
np.savez(output_path, fine_prompt=codes, coarse_prompt=codes[:2, :], semantic_prompt=semantic_tokens) |
|
return ["Finished", output_path] |