kevinwang676
commited on
Commit
·
2ff7b06
1
Parent(s):
a26bdb1
Update app.py
Browse files
app.py
CHANGED
@@ -45,6 +45,239 @@ import string
|
|
45 |
import argparse
|
46 |
import json
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
from TTS.tts.utils.synthesis import synthesis
|
49 |
from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols
|
50 |
try:
|
|
|
45 |
import argparse
|
46 |
import json
|
47 |
|
48 |
+
import gc, copy
|
49 |
+
from datetime import datetime
|
50 |
+
from huggingface_hub import hf_hub_download
|
51 |
+
from pynvml import *
|
52 |
+
nvmlInit()
|
53 |
+
gpu_h = nvmlDeviceGetHandleByIndex(0)
|
54 |
+
ctx_limit = 1536
|
55 |
+
title = "RWKV-4-Raven-7B-v12-Eng98%-Other2%-20230521-ctx8192"
|
56 |
+
|
57 |
+
os.environ["RWKV_JIT_ON"] = '1'
|
58 |
+
os.environ["RWKV_CUDA_ON"] = '1' # if '1' then use CUDA kernel for seq mode (much faster)
|
59 |
+
|
60 |
+
from rwkv.model import RWKV
|
61 |
+
model_path1 = hf_hub_download(repo_id="BlinkDL/rwkv-4-raven", filename=f"{title}.pth")
|
62 |
+
model1 = RWKV(model=model_path1, strategy='cuda fp16i8 *8 -> cuda fp16')
|
63 |
+
from rwkv.utils import PIPELINE, PIPELINE_ARGS
|
64 |
+
pipeline = PIPELINE(model1, "20B_tokenizer.json")
|
65 |
+
|
66 |
+
def generate_prompt(instruction, input=None):
|
67 |
+
instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n')
|
68 |
+
input = input.strip().replace('\r\n','\n').replace('\n\n','\n')
|
69 |
+
if input:
|
70 |
+
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
71 |
+
# Instruction:
|
72 |
+
{instruction}
|
73 |
+
# Input:
|
74 |
+
{input}
|
75 |
+
# Response:
|
76 |
+
"""
|
77 |
+
else:
|
78 |
+
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
79 |
+
# Instruction:
|
80 |
+
{instruction}
|
81 |
+
# Response:
|
82 |
+
"""
|
83 |
+
|
84 |
+
def evaluate(
|
85 |
+
instruction,
|
86 |
+
input=None,
|
87 |
+
token_count=200,
|
88 |
+
temperature=1.0,
|
89 |
+
top_p=0.7,
|
90 |
+
presencePenalty = 0.1,
|
91 |
+
countPenalty = 0.1,
|
92 |
+
):
|
93 |
+
args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p),
|
94 |
+
alpha_frequency = countPenalty,
|
95 |
+
alpha_presence = presencePenalty,
|
96 |
+
token_ban = [], # ban the generation of some tokens
|
97 |
+
token_stop = [0]) # stop generation whenever you see any token here
|
98 |
+
|
99 |
+
instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n')
|
100 |
+
input = input.strip().replace('\r\n','\n').replace('\n\n','\n')
|
101 |
+
ctx = generate_prompt(instruction, input)
|
102 |
+
|
103 |
+
all_tokens = []
|
104 |
+
out_last = 0
|
105 |
+
out_str = ''
|
106 |
+
occurrence = {}
|
107 |
+
state = None
|
108 |
+
for i in range(int(token_count)):
|
109 |
+
out, state = model1.forward(pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state)
|
110 |
+
for n in occurrence:
|
111 |
+
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
|
112 |
+
|
113 |
+
token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
|
114 |
+
if token in args.token_stop:
|
115 |
+
break
|
116 |
+
all_tokens += [token]
|
117 |
+
if token not in occurrence:
|
118 |
+
occurrence[token] = 1
|
119 |
+
else:
|
120 |
+
occurrence[token] += 1
|
121 |
+
|
122 |
+
tmp = pipeline.decode(all_tokens[out_last:])
|
123 |
+
if '\ufffd' not in tmp:
|
124 |
+
out_str += tmp
|
125 |
+
yield out_str.strip()
|
126 |
+
out_last = i + 1
|
127 |
+
|
128 |
+
gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
|
129 |
+
print(f'vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')
|
130 |
+
del out
|
131 |
+
del state
|
132 |
+
gc.collect()
|
133 |
+
torch.cuda.empty_cache()
|
134 |
+
yield out_str.strip()
|
135 |
+
|
136 |
+
examples = [
|
137 |
+
["Tell me about ravens.", "", 300, 1.2, 0.5, 0.4, 0.4],
|
138 |
+
["Write a python function to mine 1 BTC, with details and comments.", "", 300, 1.2, 0.5, 0.4, 0.4],
|
139 |
+
["Write a song about ravens.", "", 300, 1.2, 0.5, 0.4, 0.4],
|
140 |
+
["Explain the following metaphor: Life is like cats.", "", 300, 1.2, 0.5, 0.4, 0.4],
|
141 |
+
["Write a story using the following information", "A man named Alex chops a tree down", 300, 1.2, 0.5, 0.4, 0.4],
|
142 |
+
["Generate a list of adjectives that describe a person as brave.", "", 300, 1.2, 0.5, 0.4, 0.4],
|
143 |
+
["You have $100, and your goal is to turn that into as much money as possible with AI and Machine Learning. Please respond with detailed plan.", "", 300, 1.2, 0.5, 0.4, 0.4],
|
144 |
+
]
|
145 |
+
|
146 |
+
##########################################################################
|
147 |
+
|
148 |
+
chat_intro = '''The following is a coherent verbose detailed conversation between <|user|> and an AI girl named <|bot|>.
|
149 |
+
<|user|>: Hi <|bot|>, Would you like to chat with me for a while?
|
150 |
+
<|bot|>: Hi <|user|>. Sure. What would you like to talk about? I'm listening.
|
151 |
+
'''
|
152 |
+
|
153 |
+
def user(message, chatbot):
|
154 |
+
chatbot = chatbot or []
|
155 |
+
# print(f"User: {message}")
|
156 |
+
return "", chatbot + [[message, None]]
|
157 |
+
|
158 |
+
def alternative(chatbot, history):
|
159 |
+
if not chatbot or not history:
|
160 |
+
return chatbot, history
|
161 |
+
|
162 |
+
chatbot[-1][1] = None
|
163 |
+
history[0] = copy.deepcopy(history[1])
|
164 |
+
|
165 |
+
return chatbot, history
|
166 |
+
|
167 |
+
def chat(
|
168 |
+
prompt,
|
169 |
+
user,
|
170 |
+
bot,
|
171 |
+
chatbot,
|
172 |
+
history,
|
173 |
+
temperature=1.0,
|
174 |
+
top_p=0.8,
|
175 |
+
presence_penalty=0.1,
|
176 |
+
count_penalty=0.1,
|
177 |
+
):
|
178 |
+
args = PIPELINE_ARGS(temperature=max(0.2, float(temperature)), top_p=float(top_p),
|
179 |
+
alpha_frequency=float(count_penalty),
|
180 |
+
alpha_presence=float(presence_penalty),
|
181 |
+
token_ban=[], # ban the generation of some tokens
|
182 |
+
token_stop=[]) # stop generation whenever you see any token here
|
183 |
+
|
184 |
+
if not chatbot:
|
185 |
+
return chatbot, history
|
186 |
+
|
187 |
+
message = chatbot[-1][0]
|
188 |
+
message = message.strip().replace('\r\n','\n').replace('\n\n','\n')
|
189 |
+
ctx = f"{user}: {message}\n\n{bot}:"
|
190 |
+
|
191 |
+
if not history:
|
192 |
+
prompt = prompt.replace("<|user|>", user.strip())
|
193 |
+
prompt = prompt.replace("<|bot|>", bot.strip())
|
194 |
+
prompt = prompt.strip()
|
195 |
+
prompt = f"\n{prompt}\n\n"
|
196 |
+
|
197 |
+
out, state = model1.forward(pipeline.encode(prompt), None)
|
198 |
+
history = [state, None, []] # [state, state_pre, tokens]
|
199 |
+
# print("History reloaded.")
|
200 |
+
|
201 |
+
[state, _, all_tokens] = history
|
202 |
+
state_pre_0 = copy.deepcopy(state)
|
203 |
+
|
204 |
+
out, state = model1.forward(pipeline.encode(ctx)[-ctx_limit:], state)
|
205 |
+
state_pre_1 = copy.deepcopy(state) # For recovery
|
206 |
+
|
207 |
+
# print("Bot:", end='')
|
208 |
+
|
209 |
+
begin = len(all_tokens)
|
210 |
+
out_last = begin
|
211 |
+
out_str: str = ''
|
212 |
+
occurrence = {}
|
213 |
+
for i in range(300):
|
214 |
+
if i <= 0:
|
215 |
+
nl_bias = -float('inf')
|
216 |
+
elif i <= 30:
|
217 |
+
nl_bias = (i - 30) * 0.1
|
218 |
+
elif i <= 130:
|
219 |
+
nl_bias = 0
|
220 |
+
else:
|
221 |
+
nl_bias = (i - 130) * 0.25
|
222 |
+
out[187] += nl_bias
|
223 |
+
for n in occurrence:
|
224 |
+
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
|
225 |
+
|
226 |
+
token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
|
227 |
+
next_tokens = [token]
|
228 |
+
if token == 0:
|
229 |
+
next_tokens = pipeline.encode('\n\n')
|
230 |
+
all_tokens += next_tokens
|
231 |
+
|
232 |
+
if token not in occurrence:
|
233 |
+
occurrence[token] = 1
|
234 |
+
else:
|
235 |
+
occurrence[token] += 1
|
236 |
+
|
237 |
+
out, state = model1.forward(next_tokens, state)
|
238 |
+
|
239 |
+
tmp = pipeline.decode(all_tokens[out_last:])
|
240 |
+
if '\ufffd' not in tmp:
|
241 |
+
# print(tmp, end='', flush=True)
|
242 |
+
out_last = begin + i + 1
|
243 |
+
out_str += tmp
|
244 |
+
|
245 |
+
chatbot[-1][1] = out_str.strip()
|
246 |
+
history = [state, all_tokens]
|
247 |
+
yield chatbot, history
|
248 |
+
|
249 |
+
out_str = pipeline.decode(all_tokens[begin:])
|
250 |
+
out_str = out_str.replace("\r\n", '\n').replace('\\n', '\n')
|
251 |
+
|
252 |
+
if '\n\n' in out_str:
|
253 |
+
break
|
254 |
+
|
255 |
+
# State recovery
|
256 |
+
if f'{user}:' in out_str or f'{bot}:' in out_str:
|
257 |
+
idx_user = out_str.find(f'{user}:')
|
258 |
+
idx_user = len(out_str) if idx_user == -1 else idx_user
|
259 |
+
idx_bot = out_str.find(f'{bot}:')
|
260 |
+
idx_bot = len(out_str) if idx_bot == -1 else idx_bot
|
261 |
+
idx = min(idx_user, idx_bot)
|
262 |
+
|
263 |
+
if idx < len(out_str):
|
264 |
+
out_str = f" {out_str[:idx].strip()}\n\n"
|
265 |
+
tokens = pipeline.encode(out_str)
|
266 |
+
|
267 |
+
all_tokens = all_tokens[:begin] + tokens
|
268 |
+
out, state = model1.forward(tokens, state_pre_1)
|
269 |
+
break
|
270 |
+
|
271 |
+
gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
|
272 |
+
print(f'vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')
|
273 |
+
|
274 |
+
gc.collect()
|
275 |
+
torch.cuda.empty_cache()
|
276 |
+
|
277 |
+
chatbot[-1][1] = out_str.strip()
|
278 |
+
history = [state, state_pre_0, all_tokens]
|
279 |
+
yield chatbot, history
|
280 |
+
|
281 |
from TTS.tts.utils.synthesis import synthesis
|
282 |
from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols
|
283 |
try:
|