66596
commited on
Commit
•
a151177
1
Parent(s):
b95af79
initial commit
Browse files- requirements.txt +16 -0
- streamlit_app.py +297 -0
requirements.txt
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit==1.34.0
|
2 |
+
requests==2.31.0
|
3 |
+
regex==2024.5.15
|
4 |
+
beautifulsoup4==4.12.3
|
5 |
+
urllib3==2.2.1
|
6 |
+
newspaper3k==0.2.8
|
7 |
+
pandas==2.2.2
|
8 |
+
lxml_html_clean==0.1.1
|
9 |
+
tweet-preprocessor==0.6.0
|
10 |
+
transformers==4.41.0
|
11 |
+
torch==2.3.0
|
12 |
+
torchaudio==2.3.0
|
13 |
+
torchvision==0.18.0
|
14 |
+
google-api-python-client==2.131.0
|
15 |
+
goose3==3.1.19
|
16 |
+
selenium==4.21.0
|
streamlit_app.py
ADDED
@@ -0,0 +1,297 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import re
|
3 |
+
import requests
|
4 |
+
from newspaper import Article
|
5 |
+
from newspaper import Config
|
6 |
+
import preprocessor as p
|
7 |
+
import pandas as pd
|
8 |
+
import torch
|
9 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
10 |
+
import numpy as np
|
11 |
+
import torch.nn.functional as F
|
12 |
+
from goose3 import Goose
|
13 |
+
from goose3.configuration import Configuration
|
14 |
+
from bs4 import BeautifulSoup
|
15 |
+
|
16 |
+
st.write("""
|
17 |
+
# ESG Prediction App
|
18 |
+
|
19 |
+
This is a Proof of Concept for a company ESG (Environmental, Social, and Governance) risk prediction application.
|
20 |
+
""")
|
21 |
+
|
22 |
+
company = st.text_input("Company", placeholder="PT Adaro Minerals Indonesia Tbk")
|
23 |
+
|
24 |
+
GOOGLE = 'https://www.google.com/search'
|
25 |
+
headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_5) AppleWebKit/537.36 (KHTML, like Gecko) Cafari/537.36'}
|
26 |
+
|
27 |
+
API_KEY = 'AIzaSyDCfIltnvAQ3lvpovRXydRMhGQ-VxkboQ4'
|
28 |
+
SEARCH_ENGINE_ID = 'e586ee8a6c7e64d7b'
|
29 |
+
|
30 |
+
from googleapiclient.discovery import build
|
31 |
+
import math
|
32 |
+
|
33 |
+
def google_search(search_term, api_key, cse_id, **kwargs):
|
34 |
+
service = build("customsearch", "v1", developerKey=api_key)
|
35 |
+
|
36 |
+
num_search_results = kwargs['num']
|
37 |
+
if num_search_results > 100:
|
38 |
+
raise NotImplementedError('Google Custom Search API supports max of 100 results')
|
39 |
+
elif num_search_results > 10:
|
40 |
+
kwargs['num'] = 10 # this cannot be > 10 in API call
|
41 |
+
calls_to_make = math.ceil(num_search_results / 10)
|
42 |
+
else:
|
43 |
+
calls_to_make = 1
|
44 |
+
|
45 |
+
kwargs['start'] = start_item = 1
|
46 |
+
items_to_return = []
|
47 |
+
while calls_to_make > 0:
|
48 |
+
res = service.cse().list(q=search_term, cx=cse_id, **kwargs).execute()
|
49 |
+
items_to_return.extend(res['items'])
|
50 |
+
calls_to_make -= 1
|
51 |
+
start_item += 10
|
52 |
+
kwargs['start'] = start_item
|
53 |
+
leftover = num_search_results - start_item + 1
|
54 |
+
if 0 < leftover < 10:
|
55 |
+
kwargs['num'] = leftover
|
56 |
+
|
57 |
+
return items_to_return
|
58 |
+
|
59 |
+
if company:
|
60 |
+
print(f'Run: {company}')
|
61 |
+
links = []
|
62 |
+
news_text = []
|
63 |
+
|
64 |
+
query = f'{company} after:2023-01-01'
|
65 |
+
response = google_search(query, API_KEY, SEARCH_ENGINE_ID, num=10)
|
66 |
+
|
67 |
+
url_collection = [item['link'] for item in response]
|
68 |
+
import os
|
69 |
+
os.environ['ST_USER_AGENT'] = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/125.0.0.0 Safari/537.36'
|
70 |
+
|
71 |
+
user_agent = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/125.0.0.0 Safari/537.36'
|
72 |
+
config = Config()
|
73 |
+
config.browser_user_agent = user_agent
|
74 |
+
config.request_timeout = 60
|
75 |
+
config.fetch_images = False
|
76 |
+
config.memoize_articles = True
|
77 |
+
config.language = 'id'
|
78 |
+
|
79 |
+
# p.set_options(p.OPT.MENTION, p.OPT.EMOJI, p.OPT.HASHTAG, p.OPT.RESERVED, p.OPT.SMILEY, p.OPT.URL)
|
80 |
+
|
81 |
+
def cleaner(text):
|
82 |
+
text = re.sub("@[A-Za-z0-9]+", "", text) #Remove @ sign
|
83 |
+
text = text.replace("#", "").replace("_", "") #Remove hashtag sign but keep the text
|
84 |
+
# text = p.clean(text) # Clean text from any mention, emoji, hashtag, reserve words(such as FAV, RT), smiley, and url
|
85 |
+
text = text.strip().replace("\n","")
|
86 |
+
return text
|
87 |
+
|
88 |
+
for url in url_collection:
|
89 |
+
if "http" not in url:
|
90 |
+
continue
|
91 |
+
lang = "id"
|
92 |
+
if "eco-business.com" in url or "thejakartapost.com" in url or "marketforces.org.au" in url or "jakartaglobe.id" in url:
|
93 |
+
lang = "en"
|
94 |
+
|
95 |
+
### Selenium
|
96 |
+
# from selenium import webdriver
|
97 |
+
# from selenium.webdriver.chrome.options import Options
|
98 |
+
# from goose3 import Goose
|
99 |
+
|
100 |
+
# options = Options()
|
101 |
+
# options.headless = True
|
102 |
+
# options.add_argument("user-agent=Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36")
|
103 |
+
|
104 |
+
# driver = webdriver.Chrome(options=options)
|
105 |
+
# # url = 'https://example.com/news-article'
|
106 |
+
# driver.get(url)
|
107 |
+
|
108 |
+
# html = driver.page_source
|
109 |
+
# driver.quit()
|
110 |
+
|
111 |
+
# g = Goose()
|
112 |
+
# article = g.extract(raw_html=html)
|
113 |
+
|
114 |
+
# print(article.cleaned_text)
|
115 |
+
# news_text.append(article.cleaned_text)
|
116 |
+
###
|
117 |
+
|
118 |
+
# article = Article(url, language=lang, config=config)
|
119 |
+
# article.download()
|
120 |
+
# article.parse()
|
121 |
+
# article_clean = cleaner(article.text)
|
122 |
+
|
123 |
+
# url = 'https://example.com/news-article'
|
124 |
+
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'}
|
125 |
+
|
126 |
+
response = requests.get(url, headers=headers)
|
127 |
+
# html = response.text
|
128 |
+
|
129 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
130 |
+
|
131 |
+
g = Goose()
|
132 |
+
article = g.extract(raw_html=str(soup))
|
133 |
+
|
134 |
+
# print(url)
|
135 |
+
# print(soup)
|
136 |
+
# news_empty = True
|
137 |
+
|
138 |
+
possible_class = ['detail', 'body-content', 'article-content', 'detail-konten', 'DetailBlock']
|
139 |
+
excluded_sentence = ['Komentar menjadi tanggung-jawab Anda sesuai UU ITE', 'Dapatkan berita terbaru dari kami Ikuti langkah ini untuk mendapatkan notifikasi:']
|
140 |
+
|
141 |
+
if not article.cleaned_text:
|
142 |
+
article_content = soup.find('div', class_=possible_class)
|
143 |
+
if article_content and article_content.get_text() not in excluded_sentence:
|
144 |
+
news_text.append(article_content.get_text())
|
145 |
+
news_empty = False
|
146 |
+
# print(f'{url} News Exist using POSSIBLE CLASS')
|
147 |
+
else:
|
148 |
+
if article.cleaned_text not in excluded_sentence:
|
149 |
+
news_text.append(article.cleaned_text)
|
150 |
+
news_empty = False
|
151 |
+
# print(f'{url} News Exist using ARTICLE CLEANED TEXT')
|
152 |
+
|
153 |
+
# if news_empty:
|
154 |
+
# print(f'Cannot Get URL: {url}')
|
155 |
+
# print(soup)
|
156 |
+
|
157 |
+
# print(article.cleaned_text)
|
158 |
+
|
159 |
+
|
160 |
+
|
161 |
+
# goose = Goose()
|
162 |
+
# config = Configuration()
|
163 |
+
# config.strict = False # turn of strict exception handling
|
164 |
+
# config.browser_user_agent = 'Mozilla 5.0' # set the browser agent string
|
165 |
+
# config.http_timeout = 5.05 # set http timeout in seconds
|
166 |
+
|
167 |
+
# with Goose(config) as g:
|
168 |
+
# article = goose.extract(url=url)
|
169 |
+
|
170 |
+
# news_text.append(article.cleaned_text)
|
171 |
+
|
172 |
+
df = pd.DataFrame({
|
173 |
+
'news': news_text
|
174 |
+
})
|
175 |
+
|
176 |
+
# Load the tokenizer and model
|
177 |
+
tokenizer_esg = AutoTokenizer.from_pretrained("didev007/ESG-indobert-model")
|
178 |
+
model_esg = AutoModelForSequenceClassification.from_pretrained("didev007/ESG-indobert-model")
|
179 |
+
|
180 |
+
# Load the tokenizer and model
|
181 |
+
tokenizer_sentiment = AutoTokenizer.from_pretrained("adhityaprimandhika/distillbert_sentiment_analysis")
|
182 |
+
model_sentiment = AutoModelForSequenceClassification.from_pretrained("adhityaprimandhika/distillbert_sentiment_analysis")
|
183 |
+
|
184 |
+
def get_chunk_weights(num_chunks):
|
185 |
+
center = num_chunks / 2
|
186 |
+
sigma = num_chunks / 4
|
187 |
+
weights = [np.exp(-0.5 * ((i - center) / sigma) ** 2) for i in range(num_chunks)]
|
188 |
+
weights = np.array(weights)
|
189 |
+
return weights / weights.sum()
|
190 |
+
|
191 |
+
def tokenize_and_chunk(text, tokenizer, chunk_size=512):
|
192 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
193 |
+
input_ids = inputs['input_ids'][0]
|
194 |
+
|
195 |
+
chunks = [input_ids[i:i+chunk_size] for i in range(0, len(input_ids), chunk_size)]
|
196 |
+
return chunks
|
197 |
+
|
198 |
+
def esg_category(chunks, model):
|
199 |
+
num_chunks = len(chunks)
|
200 |
+
weights = get_chunk_weights(num_chunks)
|
201 |
+
|
202 |
+
esg_scores = np.zeros(4)
|
203 |
+
labels = ["none", "E", "S", "G"]
|
204 |
+
|
205 |
+
for i, chunk in enumerate(chunks):
|
206 |
+
inputs = {'input_ids': chunk.unsqueeze(0)}
|
207 |
+
outputs = model(**inputs)
|
208 |
+
logits = outputs.logits
|
209 |
+
probs = F.softmax(logits, dim=1).detach().numpy()[0]
|
210 |
+
esg_scores += weights[i] * probs
|
211 |
+
|
212 |
+
predicted_class = esg_scores.argmax()
|
213 |
+
aggregated_esg = labels[predicted_class]
|
214 |
+
|
215 |
+
return aggregated_esg
|
216 |
+
|
217 |
+
def sentiment_analysis(text, tokenizer, model):
|
218 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
219 |
+
outputs = model(**inputs)
|
220 |
+
logits = outputs.logits
|
221 |
+
predicted_class = torch.argmax(logits, dim=1).item()
|
222 |
+
labels = ["positive", "neutral", "negative"]
|
223 |
+
predicted_sentiment = labels[predicted_class]
|
224 |
+
return predicted_sentiment
|
225 |
+
|
226 |
+
def apply_model_to_dataframe(df, tokenizer_esg, model_esg, tokenizer_sentiment, model_sentiment, text_column='news'):
|
227 |
+
esg_categories = []
|
228 |
+
sentiments = []
|
229 |
+
for text in df[text_column]:
|
230 |
+
if isinstance(text, str):
|
231 |
+
chunks = tokenize_and_chunk(text, tokenizer_esg)
|
232 |
+
esg = esg_category(chunks, model_esg)
|
233 |
+
sentiment = sentiment_analysis(text, tokenizer_sentiment, model_sentiment)
|
234 |
+
esg_categories.append(esg)
|
235 |
+
sentiments.append(sentiment)
|
236 |
+
else:
|
237 |
+
esg_categories.append("none")
|
238 |
+
sentiments.append("neutral")
|
239 |
+
|
240 |
+
df['aggregated_esg'] = esg_categories
|
241 |
+
df['sentiment'] = sentiments
|
242 |
+
return df
|
243 |
+
|
244 |
+
result_data = apply_model_to_dataframe(df, tokenizer_esg, model_esg, tokenizer_sentiment, model_sentiment)
|
245 |
+
|
246 |
+
grouped_counts = df.groupby(['aggregated_esg', 'sentiment']).size().reset_index(name='count')
|
247 |
+
data = grouped_counts.pivot(index='aggregated_esg', columns='sentiment', values='count')
|
248 |
+
required_columns_sentiment = ['negative', 'positive', 'neutral']
|
249 |
+
for col in required_columns_sentiment:
|
250 |
+
if col not in data.columns:
|
251 |
+
data[col] = 0
|
252 |
+
|
253 |
+
# Handle potential missing values
|
254 |
+
data['negative'] = data['negative'].fillna(0)
|
255 |
+
data['positive'] = data['positive'].fillna(0)
|
256 |
+
data['neutral'] = data['neutral'].fillna(0)
|
257 |
+
|
258 |
+
# print(data)
|
259 |
+
|
260 |
+
data['count'] = (data['negative']+data['positive']+data['neutral'])
|
261 |
+
data['total'] = data['negative']/data['count'] + data['positive']*(-0.2)/data['count']
|
262 |
+
# data['total'] = data['negative'] + data['positive']*(-1)
|
263 |
+
if 'none' in data:
|
264 |
+
data = data.drop('none')
|
265 |
+
# data
|
266 |
+
|
267 |
+
total = data['total'].sum()
|
268 |
+
|
269 |
+
# Min-max normalization
|
270 |
+
min_esg = -1
|
271 |
+
max_esg = 2
|
272 |
+
min_score = 0
|
273 |
+
max_score = 60
|
274 |
+
|
275 |
+
ESG_score = ((total - min_esg) / (max_esg - min_esg)) * (max_score - min_score) + min_score
|
276 |
+
|
277 |
+
def esg_risk_categorization(esg_score):
|
278 |
+
if esg_score <= 10:
|
279 |
+
return 'Negligible'
|
280 |
+
elif 10 < esg_score <= 20:
|
281 |
+
return 'Low'
|
282 |
+
elif 20 < esg_score <= 30:
|
283 |
+
return 'Medium'
|
284 |
+
elif 30 < esg_score <= 40:
|
285 |
+
return 'High'
|
286 |
+
else:
|
287 |
+
return 'Severe'
|
288 |
+
|
289 |
+
risk = esg_risk_categorization(ESG_score)
|
290 |
+
|
291 |
+
# st.dataframe(df)
|
292 |
+
|
293 |
+
st.write(company)
|
294 |
+
# print(f'ESG Score Prediction: {ESG_score}')
|
295 |
+
st.write(f'ESG Score Prediction: {ESG_score}')
|
296 |
+
st.write(f'ESG Category Risk Prediction: {risk}')
|
297 |
+
|