visionary-ai / app.py
kevalfst's picture
Update app.py
76f81b8 verified
import gradio as gr
import torch
import random
import hashlib
from diffusers import DiffusionPipeline
from transformers import pipeline
from diffusers.utils import export_to_video
# Optional: xformers optimization
try:
import xformers
has_xformers = True
except ImportError:
has_xformers = False
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
MAX_SEED = 2**32 - 1
# Model lists ordered by size
image_models = {
"Stable Diffusion 1.5 (light)": "runwayml/stable-diffusion-v1-5",
"Stable Diffusion 2.1": "stabilityai/stable-diffusion-2-1",
"Dreamlike 2.0": "dreamlike-art/dreamlike-photoreal-2.0",
"Playground v2": "playgroundai/playground-v2-1024px-aesthetic",
"Muse 512": "amused/muse-512-finetuned",
"PixArt": "PixArt-alpha/PixArt-LCM-XL-2-1024-MS",
"Kandinsky 3": "kandinsky-community/kandinsky-3",
"BLIP Diffusion": "Salesforce/blipdiffusion",
"SDXL Base 1.0 (heavy)": "stabilityai/stable-diffusion-xl-base-1.0",
"OpenJourney (heavy)": "prompthero/openjourney"
}
text_models = {
"GPT-2 (light)": "gpt2",
"GPT-Neo 1.3B": "EleutherAI/gpt-neo-1.3B",
"BLOOM 1.1B": "bigscience/bloom-1b1",
"GPT-J 6B": "EleutherAI/gpt-j-6B",
"Falcon 7B": "tiiuae/falcon-7b",
"XGen 7B": "Salesforce/xgen-7b-8k-base",
"BTLM 3B": "cerebras/btlm-3b-8k-base",
"MPT 7B": "mosaicml/mpt-7b",
"StableLM 2": "stabilityai/stablelm-2-1_6b",
"LLaMA 2 7B (heavy)": "meta-llama/Llama-2-7b-hf"
}
video_models = {
"CogVideoX-2B": "THUDM/CogVideoX-2b",
"CogVideoX-5B": "THUDM/CogVideoX-5b",
"AnimateDiff-Lightning": "ByteDance/AnimateDiff-Lightning",
"ModelScope T2V": "damo-vilab/text-to-video-ms-1.7b",
"VideoCrafter2": "VideoCrafter/VideoCrafter2",
"Open-Sora-Plan-v1.2.0": "LanguageBind/Open-Sora-Plan-v1.2.0",
"LTX-Video": "Lightricks/LTX-Video",
"HunyuanVideo": "tencent/HunyuanVideo",
"Latte-1": "maxin-cn/Latte-1",
"LaVie": "Vchitect/LaVie"
}
# Caches
image_pipes = {}
text_pipes = {}
video_pipes = {}
image_cache = {}
text_cache = {}
video_cache = {}
def hash_inputs(*args):
combined = "|".join(map(str, args))
return hashlib.sha256(combined.encode()).hexdigest()
def generate_image(prompt, model_name, seed, randomize_seed, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
key = hash_inputs(prompt, model_name, seed)
if key in image_cache:
progress(100, desc="Using cached image.")
return image_cache[key], seed
progress(10, desc="Loading model...")
if model_name not in image_pipes:
pipe = DiffusionPipeline.from_pretrained(
image_models[model_name],
torch_dtype=torch_dtype,
low_cpu_mem_usage=True
)
if torch.__version__.startswith("2"):
pipe = torch.compile(pipe)
if has_xformers and device == "cuda":
try:
pipe.enable_xformers_memory_efficient_attention()
except Exception:
pass
pipe.to(device)
image_pipes[model_name] = pipe
pipe = image_pipes[model_name]
progress(40, desc="Generating image...")
result = pipe(prompt=prompt, generator=torch.manual_seed(seed), num_inference_steps=15, width=512, height=512)
image = result.images[0]
image_cache[key] = image
progress(100, desc="Done.")
return image, seed
def generate_text(prompt, model_name, progress=gr.Progress(track_tqdm=True)):
key = hash_inputs(prompt, model_name)
if key in text_cache:
progress(100, desc="Using cached text.")
return text_cache[key]
progress(10, desc="Loading model...")
if model_name not in text_pipes:
text_pipes[model_name] = pipeline(
"text-generation",
model=text_models[model_name],
device=0 if device == "cuda" else -1
)
pipe = text_pipes[model_name]
progress(40, desc="Generating text...")
result = pipe(prompt, max_length=100, do_sample=True)[0]['generated_text']
text_cache[key] = result
progress(100, desc="Done.")
return result
def generate_video(prompt, model_name, seed, randomize_seed, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
key = hash_inputs(prompt, model_name, seed)
if key in video_cache:
progress(100, desc="Using cached video.")
return video_cache[key], seed
progress(10, desc="Loading model...")
if model_name not in video_pipes:
pipe = DiffusionPipeline.from_pretrained(
video_models[model_name],
torch_dtype=torch_dtype,
variant="fp16"
)
if torch.__version__.startswith("2"):
pipe = torch.compile(pipe)
if has_xformers and device == "cuda":
try:
pipe.enable_xformers_memory_efficient_attention()
except Exception:
pass
pipe.to(device)
video_pipes[model_name] = pipe
pipe = video_pipes[model_name]
progress(40, desc="Generating video...")
result = pipe(prompt=prompt, generator=torch.manual_seed(seed), num_inference_steps=15)
video_frames = result.frames[0]
video_path = export_to_video(video_frames)
video_cache[key] = video_path
progress(100, desc="Done.")
return video_path, seed
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("# ⚡ Fast Multi-Model AI Playground with Caching")
with gr.Tabs():
# Image Generation
with gr.Tab("🖼️ Image Generation"):
img_prompt = gr.Textbox(label="Prompt")
img_model = gr.Dropdown(choices=list(image_models.keys()), value="Stable Diffusion 1.5 (light)", label="Image Model")
img_seed = gr.Slider(0, MAX_SEED, value=42, label="Seed")
img_rand = gr.Checkbox(label="Randomize seed", value=True)
img_btn = gr.Button("Generate Image")
img_out = gr.Image()
img_btn.click(fn=generate_image, inputs=[img_prompt, img_model, img_seed, img_rand], outputs=[img_out, img_seed])
# Text Generation
with gr.Tab("📝 Text Generation"):
txt_prompt = gr.Textbox(label="Prompt")
txt_model = gr.Dropdown(choices=list(text_models.keys()), value="GPT-2 (light)", label="Text Model")
txt_btn = gr.Button("Generate Text")
txt_out = gr.Textbox(label="Output Text")
txt_btn.click(fn=generate_text, inputs=[txt_prompt, txt_model], outputs=[txt_out])
# Video Generation
with gr.Tab("🎥 Video Generation"):
vid_prompt = gr.Textbox(label="Prompt")
vid_model = gr.Dropdown(choices=list(video_models.keys()), value="CogVideoX-2B", label="Video Model")
vid_seed = gr.Slider(0, MAX_SEED, value=42, label="Seed")
vid_rand = gr.Checkbox(label="Randomize seed", value=True)
vid_btn = gr.Button("Generate Video")
vid_out = gr.Video()
vid_btn.click(fn=generate_video, inputs=[vid_prompt, vid_model, vid_seed, vid_rand], outputs=[vid_out, vid_seed])
demo.launch(show_error=True)