Spaces:
Runtime error
Runtime error
import os | |
import streamlit as st | |
import pickle | |
from langchain.llms import OpenAI | |
from langchain.document_loaders import UnstructuredURLLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.vectorstores import FAISS | |
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings | |
from langchain.chains import RetrievalQAWithSourcesChain | |
from dotenv import load_dotenv | |
# Load data from URLs using the UnstructuredURLLoader | |
def load_data(urls): | |
loader = UnstructuredURLLoader(urls=urls) | |
return loader.load() | |
# Split data into manageable chunks for processing | |
def split_data(data): | |
text_splitter = RecursiveCharacterTextSplitter( | |
separators=['\n\n', '\n', '.', ','], | |
chunk_size=1000, | |
chunk_overlap=100) | |
return text_splitter.split_documents(data) | |
# Generate embeddings for the individual data chunks | |
def embed_data(individual_chunks): | |
embeddings = OpenAIEmbeddings() | |
# embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl") | |
return FAISS.from_documents(individual_chunks, embeddings) | |
# Save the FAISS index to a file for later retrieval | |
def save_faiss_index(file_path, vector_data): | |
with open(file_path, "wb") as fp: | |
pickle.dump(vector_data, fp) | |
# Load the FAISS index from the file | |
def load_faiss_index(file_path): | |
with open(file_path, 'rb') as fp: | |
return pickle.load(fp) | |
# Create a retrieval chain for question-answering using the vector store | |
def retrieval_chain(llm, vector_store): | |
return RetrievalQAWithSourcesChain.from_llm(llm=llm, retriever=vector_store.as_retriever()) | |
# Use the retrieval chain to find and return an answer to a question, along with sources | |
def find_answer(retrieval_chain, question): | |
return retrieval_chain({"question": question}) # Removed return_only_outputs=True | |
def main(): | |
load_dotenv() | |
# Set up the Streamlit interface | |
st.markdown("## ArticleIQ - Smart News Research Assistant π") | |
# To collect URLs from user input, increase the range as needed if more are required. | |
st.sidebar.title("Articles URLs π") | |
urls = [st.sidebar.text_input(f"URL {i+1}") for i in range(3)] | |
activate_articleiq = st.sidebar.button("Activate ArticleIQ") | |
status_display = st.empty() | |
file_path = 'FAISS_Vector_Data.pkl' | |
llm = OpenAI(model='gpt-3.5-turbo-instruct',temperature=0.5, max_tokens=500) | |
# If the button is clicked, start processing the URLs | |
if activate_articleiq: | |
data = load_data(urls) | |
status_display.text('Loading Data β³') | |
individual_chunks = split_data(data) | |
status_display.text('Splitting Data βοΈ') | |
vector_data = embed_data(individual_chunks) | |
status_display.text('Embedding Vectors π₯π€') | |
save_faiss_index(file_path, vector_data) | |
# Allow the user to enter a question and get an answer | |
question = status_display.text_input('Question: ') | |
if question: | |
if os.path.exists(file_path): | |
vector_store = load_faiss_index(file_path) | |
retrieval_chain_obj = retrieval_chain(llm, vector_store) | |
final_output = find_answer(retrieval_chain_obj, question) | |
st.header("IQ's Answer") | |
st.write(final_output["answer"]) | |
# Display the sources for further reading | |
sources = final_output.get("sources", '') | |
if sources: | |
st.subheader("Further reading:") | |
sources_str = sources.split("\n") | |
for source in sources_str: | |
st.write(source) | |
if __name__ == "__main__": | |
main() |