Spaces:
Build error
Build error
images
Browse files
app.py
CHANGED
@@ -16,12 +16,12 @@ def softmax(x):
|
|
16 |
labels = ["apple", "aquarium_fish", "baby", "bear", "beaver", "bed", "bee", "beetle", "bicycle", "bottle", "bowl", "boy", "bridge", "bus", "butterfly", "camel", "can", "castle", "caterpillar", "cattle", "chair", "chimpanzee", "clock", "cloud", "cockroach", "couch", "cra", "crocodile", "cup", "dinosaur", "dolphin", "elephant", "flatfish", "forest", "fox", "girl", "hamster", "house", "kangaroo", "keyboard", "lamp", "lawn_mower", "leopard", "lion", "lizard", "lobster", "man", "maple_tree", "motorcycle", "mountain", "mouse", "mushroom", "oak_tree", "orange", "orchid", "otter", "palm_tree", "pear", "pickup_truck", "pine_tree", "plain", "plate", "poppy", "porcupine", "possum", "rabbit", "raccoon", "ray", "road", "rocket", "rose", "sea", "seal", "shark", "shrew", "skunk", "skyscraper", "snail", "snake", "spider", "squirrel", "streetcar", "sunflower", "sweet_pepper", "table", "tank", "telephone", "television", "tiger", "tractor", "train", "trout", "tulip", "turtle", "wardrobe", "whale", "willow_tree", "wolf", "woman", "worm"]
|
17 |
|
18 |
def classify_image(image):
|
19 |
-
image = image.reshape((1, 32, 32, 3))
|
20 |
pred = model.predict(image)
|
21 |
prediction = softmax(pred)[0]
|
22 |
return {labels[i]: float(prediction[i]) for i in range(100)}
|
23 |
|
24 |
-
image = gr.inputs.Image()
|
25 |
label = gr.outputs.Label(num_top_classes=5)
|
26 |
|
27 |
iface = gr.Interface(classify_image,image,label,
|
|
|
16 |
labels = ["apple", "aquarium_fish", "baby", "bear", "beaver", "bed", "bee", "beetle", "bicycle", "bottle", "bowl", "boy", "bridge", "bus", "butterfly", "camel", "can", "castle", "caterpillar", "cattle", "chair", "chimpanzee", "clock", "cloud", "cockroach", "couch", "cra", "crocodile", "cup", "dinosaur", "dolphin", "elephant", "flatfish", "forest", "fox", "girl", "hamster", "house", "kangaroo", "keyboard", "lamp", "lawn_mower", "leopard", "lion", "lizard", "lobster", "man", "maple_tree", "motorcycle", "mountain", "mouse", "mushroom", "oak_tree", "orange", "orchid", "otter", "palm_tree", "pear", "pickup_truck", "pine_tree", "plain", "plate", "poppy", "porcupine", "possum", "rabbit", "raccoon", "ray", "road", "rocket", "rose", "sea", "seal", "shark", "shrew", "skunk", "skyscraper", "snail", "snake", "spider", "squirrel", "streetcar", "sunflower", "sweet_pepper", "table", "tank", "telephone", "television", "tiger", "tractor", "train", "trout", "tulip", "turtle", "wardrobe", "whale", "willow_tree", "wolf", "woman", "worm"]
|
17 |
|
18 |
def classify_image(image):
|
19 |
+
image = image.reshape((-1, 32, 32, 3))
|
20 |
pred = model.predict(image)
|
21 |
prediction = softmax(pred)[0]
|
22 |
return {labels[i]: float(prediction[i]) for i in range(100)}
|
23 |
|
24 |
+
image = gr.inputs.Image(shape(32,32))
|
25 |
label = gr.outputs.Label(num_top_classes=5)
|
26 |
|
27 |
iface = gr.Interface(classify_image,image,label,
|