joheras commited on
Commit
5be1cb4
·
1 Parent(s): 90826d0

new version

Browse files
Files changed (1) hide show
  1. app.py +4 -6
app.py CHANGED
@@ -5,9 +5,9 @@ import numpy as np
5
  import gradio as gr
6
 
7
  tf.keras.optimizers.AdamW = AdamW
8
- model = from_pretrained_keras("keras-io/vit-small-ds")
 
9
 
10
- IMAGE_SIZE = 72
11
 
12
  def softmax(x):
13
  f_x = np.exp(x) / np.sum(np.exp(x))
@@ -16,10 +16,8 @@ def softmax(x):
16
  labels = ["apple", "aquarium_fish", "baby", "bear", "beaver", "bed", "bee", "beetle", "bicycle", "bottle", "bowl", "boy", "bridge", "bus", "butterfly", "camel", "can", "castle", "caterpillar", "cattle", "chair", "chimpanzee", "clock", "cloud", "cockroach", "couch", "cra", "crocodile", "cup", "dinosaur", "dolphin", "elephant", "flatfish", "forest", "fox", "girl", "hamster", "house", "kangaroo", "keyboard", "lamp", "lawn_mower", "leopard", "lion", "lizard", "lobster", "man", "maple_tree", "motorcycle", "mountain", "mouse", "mushroom", "oak_tree", "orange", "orchid", "otter", "palm_tree", "pear", "pickup_truck", "pine_tree", "plain", "plate", "poppy", "porcupine", "possum", "rabbit", "raccoon", "ray", "road", "rocket", "rose", "sea", "seal", "shark", "shrew", "skunk", "skyscraper", "snail", "snake", "spider", "squirrel", "streetcar", "sunflower", "sweet_pepper", "table", "tank", "telephone", "television", "tiger", "tractor", "train", "trout", "tulip", "turtle", "wardrobe", "whale", "willow_tree", "wolf", "woman", "worm"]
17
 
18
  def classify_image(image):
19
- #inp = inp.reshape((-1, 299, 299, 3))
20
- resized_image = tf.image.resize(
21
- tf.convert_to_tensor([image]), size=(IMAGE_SIZE, IMAGE_SIZE))
22
- pred = model.predict(resized_image)
23
  prediction = softmax(pred)[0]
24
  return {labels[i]: float(prediction[i]) for i in range(100)}
25
 
 
5
  import gradio as gr
6
 
7
  tf.keras.optimizers.AdamW = AdamW
8
+ model = from_pretrained_keras("keras-io/vit_small_ds_v2")
9
+
10
 
 
11
 
12
  def softmax(x):
13
  f_x = np.exp(x) / np.sum(np.exp(x))
 
16
  labels = ["apple", "aquarium_fish", "baby", "bear", "beaver", "bed", "bee", "beetle", "bicycle", "bottle", "bowl", "boy", "bridge", "bus", "butterfly", "camel", "can", "castle", "caterpillar", "cattle", "chair", "chimpanzee", "clock", "cloud", "cockroach", "couch", "cra", "crocodile", "cup", "dinosaur", "dolphin", "elephant", "flatfish", "forest", "fox", "girl", "hamster", "house", "kangaroo", "keyboard", "lamp", "lawn_mower", "leopard", "lion", "lizard", "lobster", "man", "maple_tree", "motorcycle", "mountain", "mouse", "mushroom", "oak_tree", "orange", "orchid", "otter", "palm_tree", "pear", "pickup_truck", "pine_tree", "plain", "plate", "poppy", "porcupine", "possum", "rabbit", "raccoon", "ray", "road", "rocket", "rose", "sea", "seal", "shark", "shrew", "skunk", "skyscraper", "snail", "snake", "spider", "squirrel", "streetcar", "sunflower", "sweet_pepper", "table", "tank", "telephone", "television", "tiger", "tractor", "train", "trout", "tulip", "turtle", "wardrobe", "whale", "willow_tree", "wolf", "woman", "worm"]
17
 
18
  def classify_image(image):
19
+ image = image.reshape((1, 32, 32, 3))
20
+ pred = model.predict(image)
 
 
21
  prediction = softmax(pred)[0]
22
  return {labels[i]: float(prediction[i]) for i in range(100)}
23