joheras commited on
Commit
245fc18
1 Parent(s): 2f76d9b

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +45 -0
app.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from huggingface_hub import from_pretrained_keras
2
+ import tensorflow as tf
3
+ from tensorflow_addons.optimizers import AdamW
4
+ import numpy as np
5
+ import gradio as gr
6
+
7
+ tf.keras.optimizers.AdamW = AdamW
8
+ model = from_pretrained_keras("keras-io/vit-small-ds")
9
+
10
+ IMAGE_SIZE = 72
11
+
12
+ def softmax(x):
13
+ f_x = np.exp(x) / np.sum(np.exp(x))
14
+ return f_x
15
+
16
+ labels = ["apple", "aquarium_fish", "baby", "bear", "beaver", "bed", "bee", "beetle", "bicycle", "bottle", "bowl", "boy", "bridge", "bus", "butterfly", "camel", "can", "castle", "caterpillar", "cattle", "chair", "chimpanzee", "clock", "cloud", "cockroach", "couch", "cra", "crocodile", "cup", "dinosaur", "dolphin", "elephant", "flatfish", "forest", "fox", "girl", "hamster", "house", "kangaroo", "keyboard", "lamp", "lawn_mower", "leopard", "lion", "lizard", "lobster", "man", "maple_tree", "motorcycle", "mountain", "mouse", "mushroom", "oak_tree", "orange", "orchid", "otter", "palm_tree", "pear", "pickup_truck", "pine_tree", "plain", "plate", "poppy", "porcupine", "possum", "rabbit", "raccoon", "ray", "road", "rocket", "rose", "sea", "seal", "shark", "shrew", "skunk", "skyscraper", "snail", "snake", "spider", "squirrel", "streetcar", "sunflower", "sweet_pepper", "table", "tank", "telephone", "television", "tiger", "tractor", "train", "trout", "tulip", "turtle", "wardrobe", "whale", "willow_tree", "wolf", "woman", "worm"]
17
+
18
+ def classify_image(image):
19
+ #inp = inp.reshape((-1, 299, 299, 3))
20
+ resized_image = tf.image.resize(
21
+ tf.convert_to_tensor([image]), size=(IMAGE_SIZE, IMAGE_SIZE))
22
+ pred = model.predict(resized_image)
23
+ prediction = softmax(pred)
24
+ return {labels[i]: float(prediction[i]) for i in range(100)}
25
+
26
+ image = gr.inputs.Image()
27
+ label = gr.outputs.Label(num_top_classes=3)
28
+
29
+ iface = gr.Interface(classify_image,image,label,
30
+ #outputs=[
31
+ # gr.outputs.Textbox(label="Engine issue"),
32
+ # gr.outputs.Textbox(label="Engine issue score")],
33
+ examples=["sample.csv","sample2.csv"],
34
+ #, title="Classification of Ford Motor data",
35
+ # description = "Model for predicting issues in Ford engines.",
36
+ article = "Author: <a href=\"https://huggingface.co/joheras\">Jónathan Heras</a>"
37
+ # examples = ["sample.csv"],
38
+ )
39
+
40
+
41
+ iface.launch()
42
+
43
+
44
+
45
+