shivi commited on
Commit
0319821
β€’
1 Parent(s): 1d618b8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +34 -34
app.py CHANGED
@@ -11,53 +11,53 @@ example_list = list(map(lambda el:[el], example_list))
11
  # def load_example(video):
12
  # return video[0]
13
 
14
- # demo = gr.Blocks()
15
 
16
- input_video = gr.Video(label="Input Video", show_label=True)
17
- output_label = gr.Label(label="Model Output", show_label=True)
18
- output_gif = gr.Image(label="Video Gif", show_label=True)
19
- title = "Video Classification with Transformers"
20
- description = "This space demonstrates the use of a hybrid (CNN-Transformer based) model for video classification. \n The model can classify videos belonging to the following action categories: CricketShot, Punch, ShavingBeard, TennisSwing, PlayingCello. \n Upload a video and try out πŸ€— "
21
 
22
- article = '\n Demo created by: <a href=\"https://www.linkedin.com/in/shivalika-singh/\">Shivalika Singh</a> <br> Based on this <a href=\"https://keras.io/examples/vision/video_transformers/\">Keras example</a> by <a href=\"https://twitter.com/RisingSayak\">Sayak Paul</a> <br> Demo Powered by this <a href=\"https://huggingface.co/shivi/video-transformers/\"> Video Classification</a> model'
23
 
24
- gr.Interface(predict_action, input_video, [output_label, output_gif], examples=example_list, allow_flagging=False, analytics_enabled=False,
25
- title=title, description=description, cache_examples=True, article=article).launch(enable_queue=True,share=True)
26
 
27
 
28
- # with demo:
29
 
30
- # gr.Markdown("# **<p align='center'>Video Classification with Transformers</p>**")
31
- # gr.Markdown("This space demonstrates the use of hybrid Transformer-based models for video classification that operate on CNN feature maps.")
32
 
33
- # with gr.Tabs():
34
 
35
- # with gr.TabItem("Upload & Predict"):
36
- # with gr.Box():
37
 
38
- # with gr.Row():
39
- # input_video = gr.Video(label="Input Video", show_label=True)
40
- # output_label = gr.Label(label="Model Output", show_label=True)
41
- # output_gif = gr.Image(label="Video Gif", show_label=True)
42
 
43
- # gr.Markdown("**Predict**")
44
 
45
- # with gr.Box():
46
- # with gr.Row():
47
- # submit_button = gr.Button("Submit")
48
 
49
- # gr.Markdown("**Examples:**")
50
- # gr.Markdown("The model is trained to classify videos belonging to the following classes:")
51
- # gr.Markdown("CricketShot, PlayingCello, Punch, ShavingBeard, TennisSwing")
52
-
53
- # with gr.Column():
54
- # # gr.Examples("examples", [input_video], [output_label,output_gif], predict_action, cache_examples=True)
55
- # examples = gr.components.Dataset(components=[input_video], samples=example_list, type='values')
56
- # examples.click(load_example, examples, input_video)
57
 
58
- # submit_button.click(predict_action, inputs=input_video, outputs=[output_label,output_gif])
59
 
60
- # gr.Markdown('\n Author: <a href=\"https://www.linkedin.com/in/shivalika-singh/\">Shivalika Singh</a> <br> Based on this <a href=\"https://keras.io/examples/vision/video_transformers/\">Keras example</a> by <a href=\"https://twitter.com/RisingSayak\">Sayak Paul</a> <br> Demo Powered by this <a href=\"https://huggingface.co/shivi/video-transformers/\"> Video Classification</a> model')
61
 
62
- # demo.launch()
63
 
 
11
  # def load_example(video):
12
  # return video[0]
13
 
14
+ demo = gr.Blocks()
15
 
16
+ #input_video = gr.Video(label="Input Video", show_label=True)
17
+ #output_label = gr.Label(label="Model Output", show_label=True)
18
+ #output_gif = gr.Image(label="Video Gif", show_label=True)
19
+ #title = "Video Classification with Transformers"
20
+ #description = "This space demonstrates the use of a hybrid (CNN-Transformer based) model for video classification. \n The model can classify videos belonging to the following action categories: CricketShot, Punch, ShavingBeard, TennisSwing, PlayingCello. \n Upload a video and try out πŸ€— "
21
 
22
+ #article = '\n Demo created by: <a href=\"https://www.linkedin.com/in/shivalika-singh/\">Shivalika Singh</a> <br> Based on this <a href=\"https://keras.io/examples/vision/video_transformers/\">Keras example</a> by <a href=\"https://twitter.com/RisingSayak\">Sayak Paul</a> <br> Demo Powered by this <a href=\"https://huggingface.co/shivi/video-transformers/\"> Video Classification</a> model'
23
 
24
+ #gr.Interface(predict_action, input_video, [output_label, output_gif], examples=example_list, allow_flagging=False, analytics_enabled=False,
25
+ # title=title, description=description, cache_examples=True, article=article).launch(enable_queue=True,share=True)
26
 
27
 
28
+ with demo:
29
 
30
+ gr.Markdown("# **<p align='center'>Video Classification with Transformers</p>**")
31
+ gr.Markdown("This space demonstrates the use of hybrid Transformer-based models for video classification that operate on CNN feature maps.")
32
 
33
+ with gr.Tabs():
34
 
35
+ with gr.TabItem("Upload & Predict"):
36
+ with gr.Box():
37
 
38
+ with gr.Row():
39
+ input_video = gr.Video(label="Input Video", show_label=True)
40
+ output_label = gr.Label(label="Model Output", show_label=True)
41
+ output_gif = gr.Image(label="Video Gif", show_label=True)
42
 
43
+ gr.Markdown("**Predict**")
44
 
45
+ with gr.Box():
46
+ with gr.Row():
47
+ submit_button = gr.Button("Submit")
48
 
49
+ gr.Markdown("**Examples:**")
50
+ gr.Markdown("The model is trained to classify videos belonging to the following classes:")
51
+ gr.Markdown("CricketShot, PlayingCello, Punch, ShavingBeard, TennisSwing")
52
+
53
+ with gr.Column():
54
+ gr.Examples(example_list, [input_video], [output_label,output_gif], predict_action, cache_examples=True)
55
+ #examples = gr.components.Dataset(components=[input_video], samples=example_list, type='values')
56
+ #examples.click(load_example, examples, input_video)
57
 
58
+ submit_button.click(predict_action, inputs=input_video, outputs=[output_label,output_gif])
59
 
60
+ gr.Markdown('\n Author: <a href=\"https://www.linkedin.com/in/shivalika-singh/\">Shivalika Singh</a> <br> Based on this <a href=\"https://keras.io/examples/vision/video_transformers/\">Keras example</a> by <a href=\"https://twitter.com/RisingSayak\">Sayak Paul</a> <br> Demo Powered by this <a href=\"https://huggingface.co/shivi/video-transformers/\"> Video Classification</a> model')
61
 
62
+ demo.launch()
63