Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -11,53 +11,53 @@ example_list = list(map(lambda el:[el], example_list))
|
|
11 |
# def load_example(video):
|
12 |
# return video[0]
|
13 |
|
14 |
-
|
15 |
|
16 |
-
input_video = gr.Video(label="Input Video", show_label=True)
|
17 |
-
output_label = gr.Label(label="Model Output", show_label=True)
|
18 |
-
output_gif = gr.Image(label="Video Gif", show_label=True)
|
19 |
-
title = "Video Classification with Transformers"
|
20 |
-
description = "This space demonstrates the use of a hybrid (CNN-Transformer based) model for video classification. \n The model can classify videos belonging to the following action categories: CricketShot, Punch, ShavingBeard, TennisSwing, PlayingCello. \n Upload a video and try out π€ "
|
21 |
|
22 |
-
article = '\n Demo created by: <a href=\"https://www.linkedin.com/in/shivalika-singh/\">Shivalika Singh</a> <br> Based on this <a href=\"https://keras.io/examples/vision/video_transformers/\">Keras example</a> by <a href=\"https://twitter.com/RisingSayak\">Sayak Paul</a> <br> Demo Powered by this <a href=\"https://huggingface.co/shivi/video-transformers/\"> Video Classification</a> model'
|
23 |
|
24 |
-
gr.Interface(predict_action, input_video, [output_label, output_gif], examples=example_list, allow_flagging=False, analytics_enabled=False,
|
25 |
-
title=title, description=description, cache_examples=True, article=article).launch(enable_queue=True,share=True)
|
26 |
|
27 |
|
28 |
-
|
29 |
|
30 |
-
|
31 |
-
|
32 |
|
33 |
-
|
34 |
|
35 |
-
|
36 |
-
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
|
43 |
-
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
#
|
56 |
-
#
|
57 |
|
58 |
-
|
59 |
|
60 |
-
|
61 |
|
62 |
-
|
63 |
|
|
|
11 |
# def load_example(video):
|
12 |
# return video[0]
|
13 |
|
14 |
+
demo = gr.Blocks()
|
15 |
|
16 |
+
#input_video = gr.Video(label="Input Video", show_label=True)
|
17 |
+
#output_label = gr.Label(label="Model Output", show_label=True)
|
18 |
+
#output_gif = gr.Image(label="Video Gif", show_label=True)
|
19 |
+
#title = "Video Classification with Transformers"
|
20 |
+
#description = "This space demonstrates the use of a hybrid (CNN-Transformer based) model for video classification. \n The model can classify videos belonging to the following action categories: CricketShot, Punch, ShavingBeard, TennisSwing, PlayingCello. \n Upload a video and try out π€ "
|
21 |
|
22 |
+
#article = '\n Demo created by: <a href=\"https://www.linkedin.com/in/shivalika-singh/\">Shivalika Singh</a> <br> Based on this <a href=\"https://keras.io/examples/vision/video_transformers/\">Keras example</a> by <a href=\"https://twitter.com/RisingSayak\">Sayak Paul</a> <br> Demo Powered by this <a href=\"https://huggingface.co/shivi/video-transformers/\"> Video Classification</a> model'
|
23 |
|
24 |
+
#gr.Interface(predict_action, input_video, [output_label, output_gif], examples=example_list, allow_flagging=False, analytics_enabled=False,
|
25 |
+
# title=title, description=description, cache_examples=True, article=article).launch(enable_queue=True,share=True)
|
26 |
|
27 |
|
28 |
+
with demo:
|
29 |
|
30 |
+
gr.Markdown("# **<p align='center'>Video Classification with Transformers</p>**")
|
31 |
+
gr.Markdown("This space demonstrates the use of hybrid Transformer-based models for video classification that operate on CNN feature maps.")
|
32 |
|
33 |
+
with gr.Tabs():
|
34 |
|
35 |
+
with gr.TabItem("Upload & Predict"):
|
36 |
+
with gr.Box():
|
37 |
|
38 |
+
with gr.Row():
|
39 |
+
input_video = gr.Video(label="Input Video", show_label=True)
|
40 |
+
output_label = gr.Label(label="Model Output", show_label=True)
|
41 |
+
output_gif = gr.Image(label="Video Gif", show_label=True)
|
42 |
|
43 |
+
gr.Markdown("**Predict**")
|
44 |
|
45 |
+
with gr.Box():
|
46 |
+
with gr.Row():
|
47 |
+
submit_button = gr.Button("Submit")
|
48 |
|
49 |
+
gr.Markdown("**Examples:**")
|
50 |
+
gr.Markdown("The model is trained to classify videos belonging to the following classes:")
|
51 |
+
gr.Markdown("CricketShot, PlayingCello, Punch, ShavingBeard, TennisSwing")
|
52 |
+
|
53 |
+
with gr.Column():
|
54 |
+
gr.Examples(example_list, [input_video], [output_label,output_gif], predict_action, cache_examples=True)
|
55 |
+
#examples = gr.components.Dataset(components=[input_video], samples=example_list, type='values')
|
56 |
+
#examples.click(load_example, examples, input_video)
|
57 |
|
58 |
+
submit_button.click(predict_action, inputs=input_video, outputs=[output_label,output_gif])
|
59 |
|
60 |
+
gr.Markdown('\n Author: <a href=\"https://www.linkedin.com/in/shivalika-singh/\">Shivalika Singh</a> <br> Based on this <a href=\"https://keras.io/examples/vision/video_transformers/\">Keras example</a> by <a href=\"https://twitter.com/RisingSayak\">Sayak Paul</a> <br> Demo Powered by this <a href=\"https://huggingface.co/shivi/video-transformers/\"> Video Classification</a> model')
|
61 |
|
62 |
+
demo.launch()
|
63 |
|