update
Browse files
app.py
CHANGED
@@ -3,10 +3,21 @@ from huggingface_hub import from_pretrained_keras
|
|
3 |
import pandas as pd
|
4 |
import numpy as np
|
5 |
import json
|
|
|
6 |
|
7 |
f = open('scaler.json')
|
8 |
scaler = json.load(f)
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
def normalize_data(data):
|
11 |
df_test_value = (data - scaler["mean"]) / scaler["std"]
|
12 |
return df_test_value
|
@@ -27,7 +38,7 @@ def get_anomalies(df_test_value):
|
|
27 |
test_mae_loss = test_mae_loss.reshape((-1))
|
28 |
|
29 |
# Detect all the samples which are anomalies.
|
30 |
-
anomalies = test_mae_loss > threshold
|
31 |
return anomalies
|
32 |
|
33 |
def plot_anomalies(df_test_value, data, anomalies):
|
@@ -59,9 +70,8 @@ gr.inputs.File(label="csv file"),
|
|
59 |
outputs=['plot'],
|
60 |
examples=["art_daily_jumpsup.csv"], title="Anomaly detection of timeseries data",
|
61 |
description = "Anomaly detection of timeseries data.",
|
62 |
-
article = "Space by: <a href=\"https://www.linkedin.com/in/olohireme-ajayi/\">Reme Ajayi</a> /n Keras Example by <a href=\"https://github.com/pavithrasv/\"> Pavithra Vijay</a>"
|
63 |
|
64 |
-
)
|
65 |
|
66 |
|
67 |
iface.launch()
|
|
|
3 |
import pandas as pd
|
4 |
import numpy as np
|
5 |
import json
|
6 |
+
from matplotlib import pyplot as plt
|
7 |
|
8 |
f = open('scaler.json')
|
9 |
scaler = json.load(f)
|
10 |
|
11 |
+
TIME_STEPS = 288
|
12 |
+
|
13 |
+
# Generated training sequences for use in the model.
|
14 |
+
def create_sequences(values, time_steps=TIME_STEPS):
|
15 |
+
output = []
|
16 |
+
for i in range(len(values) - time_steps + 1):
|
17 |
+
output.append(values[i : (i + time_steps)])
|
18 |
+
return np.stack(output)
|
19 |
+
|
20 |
+
|
21 |
def normalize_data(data):
|
22 |
df_test_value = (data - scaler["mean"]) / scaler["std"]
|
23 |
return df_test_value
|
|
|
38 |
test_mae_loss = test_mae_loss.reshape((-1))
|
39 |
|
40 |
# Detect all the samples which are anomalies.
|
41 |
+
anomalies = test_mae_loss > scaler["threshold"]
|
42 |
return anomalies
|
43 |
|
44 |
def plot_anomalies(df_test_value, data, anomalies):
|
|
|
70 |
outputs=['plot'],
|
71 |
examples=["art_daily_jumpsup.csv"], title="Anomaly detection of timeseries data",
|
72 |
description = "Anomaly detection of timeseries data.",
|
73 |
+
article = "Space by: <a href=\"https://www.linkedin.com/in/olohireme-ajayi/\">Reme Ajayi</a> /n Keras Example by <a href=\"https://github.com/pavithrasv/\"> Pavithra Vijay</a>")
|
74 |
|
|
|
75 |
|
76 |
|
77 |
iface.launch()
|