Spaces:
Runtime error
Runtime error
import matplotlib | |
matplotlib.use('Agg') | |
import gradio as gr | |
import tensorflow as tf | |
from huggingface_hub import from_pretrained_keras | |
import numpy as np | |
from collections import defaultdict | |
import matplotlib.pyplot as plt | |
import plotly.express as px | |
from plotly import subplots | |
import pandas as pd | |
import random | |
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data() | |
x_data = np.concatenate([x_train, x_test]) | |
y_data = np.concatenate([y_train, y_test]) | |
num_classes = 10 | |
classes = [ | |
"airplane", | |
"automobile", | |
"bird", | |
"cat", | |
"deer", | |
"dog", | |
"frog", | |
"horse", | |
"ship", | |
"truck", | |
] | |
clustering_model = from_pretrained_keras("johko/semantic-image-clustering") | |
# Get the cluster probability distribution of the input images. | |
clustering_probs = clustering_model.predict(x_data, batch_size=500, verbose=1) | |
# Get the cluster of the highest probability. | |
cluster_assignments = tf.math.argmax(clustering_probs, axis=-1).numpy() | |
# Store the clustering confidence. | |
# Images with the highest clustering confidence are considered the 'prototypes' | |
# of the clusters. | |
cluster_confidence = tf.math.reduce_max(clustering_probs, axis=-1).numpy() | |
clusters = defaultdict(list) | |
for idx, c in enumerate(cluster_assignments): | |
clusters[c].append((idx, cluster_confidence[idx])) | |
def get_cluster_size(cluster_number: int): | |
cluster_size = len(clusters[cluster_number-1]) | |
return f"Cluster #{cluster_number} consists of {cluster_size} objects" | |
def get_images_from_cluster(cluster_number: int, num_images: int, image_mode: str): | |
position = 1 | |
if image_mode == "Random Images from Cluster": | |
cluster_instances = clusters[cluster_number-1] | |
random.shuffle(cluster_instances) | |
else : | |
cluster_instances = sorted(clusters[cluster_number-1], key=lambda kv: kv[1], reverse=True) | |
fig = plt.figure() | |
for j in range(num_images): | |
image_idx = cluster_instances[j][0] | |
plt.subplot(1, num_images, position) | |
plt.imshow(x_data[image_idx].astype("uint8")) | |
plt.title(classes[y_data[image_idx][0]]) | |
plt.axis("off") | |
position += 1 | |
fig.tight_layout() | |
return fig | |
# labels = [] | |
# images = [] | |
# for j in range(num_images): | |
# image_idx = cluster_instances[j][0] | |
# images.append(x_data[image_idx].astype("uint8")) | |
# labels.append(classes[y_data[image_idx][0]]) | |
# fig = subplots.make_subplots(rows=int(num_images/4)+1, cols=4, subplot_titles=labels) | |
# for j in range(num_images): | |
# fig.add_trace(px.imshow(images[j]).data[0], row=int(j/4)+1, col=j%4+1) | |
# fig.update_xaxes(visible=False) | |
# fig.update_yaxes(visible=False) | |
# return fig | |
def get_cluster_details(cluster_number: int): | |
cluster_label_counts = list() | |
cluster_label_counts = [0] * num_classes | |
instances = clusters[cluster_number-1] | |
for i, _ in instances: | |
cluster_label_counts[y_data[i][0]] += 1 | |
class_count = zip(classes, cluster_label_counts) | |
class_count_dict = dict(class_count) | |
count_df = pd.Series(class_count_dict).to_frame() | |
fig_pie = px.pie(count_df, values=0, names=count_df.index, title='Number of class objects in cluster') | |
return fig_pie | |
def get_cluster_info(cluster_number: int, num_images: int, image_mode: str): | |
cluster_size = get_cluster_size(cluster_number) | |
img_fig = get_images_from_cluster(cluster_number, num_images, image_mode) | |
detail_fig = get_cluster_details(cluster_number) | |
return [cluster_size, img_fig, detail_fig] | |
article = """<center> | |
Authors: <a href='https://twitter.com/johko990' target='_blank'>Johannes Kolbe</a> after an example by [Khalid Salama](https://www.linkedin.com/in/khalid-salama-24403144/) on | |
<a href='https://keras.io/examples/vision/semantic_image_clustering/' target='_blank'>**keras.io**</a>""" | |
description = """<center> | |
# Semantic Image Clustering | |
This space is intended to give you insights to image clusters, created by a model trained with the [**Semantic Clustering by Adopting Nearest neighbors (SCAN)**](https://arxiv.org/abs/2005.12320)(Van Gansbeke et al., 2020) algorithm. | |
First choose one of the 20 clusters, and how many images you want to preview from it. There are two options for the images either *Random*, which as you might guess, | |
gives you random images from the cluster or *High Similarity*, which gives you images that are similar according to the learned representations of the cluster. | |
""" | |
demo = gr.Blocks() | |
with demo: | |
gr.Markdown(description) | |
with gr.Row(): | |
btn = gr.Button("Get Cluster Info") | |
with gr.Column(): | |
inp = [gr.Slider(minimum=1, maximum=20, step=1, label="Select Cluster"), | |
gr.Slider(minimum=6, maximum=15, step=1, label="Number of Images to Show", value=8), | |
gr.Radio(["Random Images from Cluster", "High Similarity Images"], label="Image Choice")] | |
with gr.Row(): | |
with gr.Column(): | |
out1 = [gr.Text(label="Cluster Size"), gr.Plot(label="Image Examples"), gr.Plot(label="Class details")] | |
gr.Markdown(article) | |
btn.click(fn=get_cluster_info, inputs=inp, outputs=out1) | |
demo.launch() | |