Spaces:
Build error
Build error
reichenbach
commited on
Commit
·
f1a14d9
1
Parent(s):
9ac47a7
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import numpy as np
|
3 |
+
import gradio as gr
|
4 |
+
import tensorflow as tf
|
5 |
+
from tensorflow import keras
|
6 |
+
from huggingface_hub.keras_mixin import from_pretrained_keras
|
7 |
+
|
8 |
+
class CustomNonPaddingTokenLoss(keras.losses.Loss):
|
9 |
+
def __init__(self, name="custom_ner_loss"):
|
10 |
+
super().__init__(name=name)
|
11 |
+
|
12 |
+
def call(self, y_true, y_pred):
|
13 |
+
loss_fn = keras.losses.SparseCategoricalCrossentropy(
|
14 |
+
from_logits=True, reduction=keras.losses.Reduction.NONE
|
15 |
+
)
|
16 |
+
|
17 |
+
loss = loss_fn(y_true, y_pred)
|
18 |
+
mask = tf.cast((y_true > 0), dtype=tf.float32)
|
19 |
+
|
20 |
+
loss = loss * mask
|
21 |
+
return tf.reduce_sum(loss) / tf.reduce_sum(mask)
|
22 |
+
|
23 |
+
def lowercase_and_convert_to_ids(tokens):
|
24 |
+
tokens = tf.strings.lower(tokens)
|
25 |
+
|
26 |
+
return lookup_layer(tokens)
|
27 |
+
|
28 |
+
def tokenize_and_convert_to_ids(text):
|
29 |
+
tokens = text.split()
|
30 |
+
return lowercase_and_convert_to_ids(tokens)
|
31 |
+
|
32 |
+
|
33 |
+
def ner_tagging(text_1):
|
34 |
+
|
35 |
+
with open("vocab.json",'r') as f:
|
36 |
+
vocab = json.load(f)
|
37 |
+
|
38 |
+
with open('mapping.json','r') as f:
|
39 |
+
mapping = json.load(f)
|
40 |
+
|
41 |
+
ner_model = from_pretrained_keras("keras-io/ner-with-transformers",
|
42 |
+
custom_objects={'CustomNonPaddingTokenLoss':CustomNonPaddingTokenLoss},
|
43 |
+
compile=False)
|
44 |
+
|
45 |
+
lookup_layer = keras.layers.StringLookup(vocabulary=vocab['tokens'])
|
46 |
+
|
47 |
+
sample_input = tokenize_and_convert_to_ids(text_1)
|
48 |
+
sample_input = tf.reshape(sample_input, shape=[1, -1])
|
49 |
+
output = ner_model.predict(sample_input)
|
50 |
+
prediction = np.argmax(output, axis=-1)[0]
|
51 |
+
|
52 |
+
prediction = [mapping[str(i)] for i in prediction]
|
53 |
+
|
54 |
+
return prediction
|
55 |
+
|
56 |
+
text_1 = gr.inputs.Textbox(lines=5)
|
57 |
+
|
58 |
+
ner_tag = gr.outputs.Textbox()
|
59 |
+
|
60 |
+
iface = gr.Interface(ner_tagging,
|
61 |
+
inputs=text_1,outputs=ner_tag, examples=[['EU rejects German call to boycott British lamb .'],
|
62 |
+
["Wednesday's U.S. Open draw ceremony revealed that both title holders should run into their first serious opposition in the third round."]])
|
63 |
+
|
64 |
+
iface.launch()
|