Spaces:
Build error
Build error
import os | |
os.system('pip install tensorflow') | |
os.system('pip install tensorflow_hub') | |
os.system('pip install tensorflow_text') | |
from huggingface_hub import from_pretrained_keras | |
import numpy as np | |
import pandas as pd | |
import tensorflow as tf | |
import tensorflow_hub as hub | |
import tensorflow_text as text | |
from tensorflow import keras | |
import gradio as gr | |
def make_bert_preprocessing_model(sentence_features, seq_length=128): | |
"""Returns Model mapping string features to BERT inputs. | |
Args: | |
sentence_features: A list with the names of string-valued features. | |
seq_length: An integer that defines the sequence length of BERT inputs. | |
Returns: | |
A Keras Model that can be called on a list or dict of string Tensors | |
(with the order or names, resp., given by sentence_features) and | |
returns a dict of tensors for input to BERT. | |
""" | |
input_segments = [ | |
tf.keras.layers.Input(shape=(), dtype=tf.string, name=ft) | |
for ft in sentence_features | |
] | |
# tokenize the text to word pieces | |
bert_preprocess = hub.load(bert_preprocess_path) | |
tokenizer = hub.KerasLayer(bert_preprocess.tokenize, | |
name="tokenizer") | |
segments = [tokenizer(s) for s in input_segments] | |
truncated_segments = segments | |
packer = hub.KerasLayer(bert_preprocess.bert_pack_inputs, | |
arguments=dict(seq_length=seq_length), | |
name="packer") | |
model_inputs = packer(truncated_segments) | |
return keras.Model(input_segments, model_inputs) | |
def preprocess_image(image_path, resize): | |
extension = tf.strings.split(image_path)[-1] | |
image = tf.io.read_file(image_path) | |
if extension == b"jpg": | |
image = tf.image.decode_jpeg(image, 3) | |
else: | |
image = tf.image.decode_png(image, 3) | |
image = tf.image.resize(image, resize) | |
return image | |
def preprocess_text(text_1, text_2): | |
text_1 = tf.convert_to_tensor([text_1]) | |
text_2 = tf.convert_to_tensor([text_2]) | |
output = bert_preprocess_model([text_1, text_2]) | |
output = {feature: tf.squeeze(output[feature]) for feature in bert_input_features} | |
return output | |
def preprocess_text_and_image(sample, resize): | |
image_1 = preprocess_image(sample['image_1_path'], resize) | |
image_2 = preprocess_image(sample['image_2_path'], resize) | |
text = preprocess_text(sample['text_1'], sample['text_2']) | |
return {"image_1": image_1, "image_2": image_2, "text": text} | |
def classify_info(image_1, text_1, image_2, text_2): | |
sample = dict() | |
sample['image_1_path'] = image_1 | |
sample['image_2_path'] = image_2 | |
sample['text_1'] = text_1 | |
sample['text_2'] = text_2 | |
dataframe = pd.DataFrame(sample, index=[0]) | |
ds = tf.data.Dataset.from_tensor_slices((dict(dataframe), [0])) | |
ds = ds.map(lambda x, y: (preprocess_text_and_image(x, resize), y)).cache() | |
batch_size = 1 | |
auto = tf.data.AUTOTUNE | |
ds = ds.batch(batch_size).prefetch(auto) | |
output = model.predict(ds) | |
label = np.argmax(output) | |
return labels[label] | |
model = from_pretrained_keras("keras-io/multimodal-entailment") | |
resize = (128, 128) | |
bert_input_features = ["input_word_ids", "input_type_ids", "input_mask"] | |
bert_model_path = ("https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-2_H-256_A-4/1") | |
bert_preprocess_path = "https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3" | |
bert_preprocess_model = make_bert_preprocessing_model(['text_1', 'text_2']) | |
labels = {0: "Contradictory", 1: "Implies", 2: "No Entailment"} | |
resize = (128, 128) | |
image_1 = gr.inputs.Image(type="filepath") | |
image_2 = gr.inputs.Image(type="filepath") | |
text_1 = gr.inputs.Textbox(lines=5) | |
text_2 = gr.inputs.Textbox(lines=5) | |
label = gr.outputs.Label() | |
iface = gr.Interface(classify_info, | |
inputs=[image_1, text_1, image_2, text_2],outputs=label) | |
iface.launch() |