DrishtiSharma's picture
Update app.py
33959c1
raw
history blame
1.39 kB
import gradio as gr
import tensorflow as tf
from tensorflow.keras.preprocessing.sequence import pad_sequences
import pickle
from huggingface_hub import from_pretrained_keras
model = from_pretrained_keras("keras-io/bidirectional-lstm-imdb")
with open('tokenizer.pickle', 'rb') as file:
tokenizer = pickle.load(file)
def decide(text):
tokenized_text = tokenizer.texts_to_sequences([text])
padded_tokens = pad_sequences(tokenized_text, maxlen= 200)
result = model.predict(padded_tokens, verbose=0)
if result[:] > 0.6 :
return f"Positive review with {result : .0%} prediction score"
elif result[:] < 0.4:
return f"Negative review with {result : .0%} prediction score"
else:
return "Neutral Review"
example_sentence_1 = "I hate the movie, they made no effort in making the movie. Waste of time!"
example_sentence_2 = "Awesome movie! Loved the way in which the hero acted."
examples = [[example_sentence_1], [example_sentence_2]]
description = "Write out a movie review to know the underlying sentiment."
gr.Interface(decide, inputs= gr.inputs.Textbox( lines=1, placeholder=None, default="", label=None), outputs='text', examples=examples,
title="Sentiment analysis of movie reviews",description=description, allow_flagging="auto",
flagging_dir='flagging records').launch( enable_queue = True, inline=False, share = True)