Spaces:
Runtime error
Runtime error
import gradio as gr | |
import tensorflow as tf | |
from tensorflow.keras.preprocessing.sequence import pad_sequences | |
import pickle | |
from huggingface_hub import from_pretrained_keras | |
model = from_pretrained_keras("keras-io/bidirectional-lstm-imdb") | |
with open('tokenizer.pickle', 'rb') as file: | |
tokenizer = pickle.load(file) | |
def decide(text): | |
tokenized_text = tokenizer.texts_to_sequences([text]) | |
padded_tokens = pad_sequences(tokenized_text, maxlen= 200) | |
result = model.predict(padded_tokens, verbose=0) | |
if result[:] > 0.6 : | |
return f"Positive review with {result : .0%} prediction score" | |
elif result[:] < 0.4: | |
return f"Negative review with {result : .0%} prediction score" | |
else: | |
return "Neutral Review" | |
example_sentence_1 = "I hate the movie, they made no effort in making the movie. Waste of time!" | |
example_sentence_2 = "Awesome movie! Loved the way in which the hero acted." | |
examples = [[example_sentence_1], [example_sentence_2]] | |
description = "Write out a movie review to know the underlying sentiment." | |
gr.Interface(decide, inputs= gr.inputs.Textbox( lines=1, placeholder=None, default="", label=None), outputs='text', examples=examples, | |
title="Sentiment analysis of movie reviews",description=description, allow_flagging="auto", | |
flagging_dir='flagging records').launch( enable_queue = True, inline=False, share = True) | |