Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from huggingface_hub import from_pretrained_keras
|
2 |
+
import numpy as np
|
3 |
+
import tensorflow as tf
|
4 |
+
from tensorflow.keras import layers
|
5 |
+
import tensorflow_io as tfio
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
import librosa
|
9 |
+
import librosa.display
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
|
12 |
+
class MelSpec(layers.Layer):
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
frame_length=1024,
|
16 |
+
frame_step=256,
|
17 |
+
fft_length=None,
|
18 |
+
sampling_rate=22050,
|
19 |
+
num_mel_channels=80,
|
20 |
+
freq_min=125,
|
21 |
+
freq_max=7600,
|
22 |
+
**kwargs,
|
23 |
+
):
|
24 |
+
super().__init__(**kwargs)
|
25 |
+
self.frame_length = frame_length
|
26 |
+
self.frame_step = frame_step
|
27 |
+
self.fft_length = fft_length
|
28 |
+
self.sampling_rate = sampling_rate
|
29 |
+
self.num_mel_channels = num_mel_channels
|
30 |
+
self.freq_min = freq_min
|
31 |
+
self.freq_max = freq_max
|
32 |
+
self.mel_filterbank = tf.signal.linear_to_mel_weight_matrix(
|
33 |
+
num_mel_bins=self.num_mel_channels,
|
34 |
+
num_spectrogram_bins=self.frame_length // 2 + 1,
|
35 |
+
sample_rate=self.sampling_rate,
|
36 |
+
lower_edge_hertz=self.freq_min,
|
37 |
+
upper_edge_hertz=self.freq_max,
|
38 |
+
)
|
39 |
+
|
40 |
+
def call(self, audio):
|
41 |
+
stft = tf.signal.stft(
|
42 |
+
tf.squeeze(audio, -1),
|
43 |
+
self.frame_length,
|
44 |
+
self.frame_step,
|
45 |
+
self.fft_length,
|
46 |
+
pad_end=True,
|
47 |
+
)
|
48 |
+
|
49 |
+
# Taking the magnitude of the STFT output
|
50 |
+
magnitude = tf.abs(stft)
|
51 |
+
|
52 |
+
# Multiplying the Mel-filterbank with the magnitude and scaling it using the db scale
|
53 |
+
mel = tf.matmul(tf.square(magnitude), self.mel_filterbank)
|
54 |
+
log_mel_spec = tfio.audio.dbscale(mel, top_db=80)
|
55 |
+
return log_mel_spec
|
56 |
+
|
57 |
+
|
58 |
+
def get_config(self):
|
59 |
+
config = super(MelSpec, self).get_config()
|
60 |
+
config.update(
|
61 |
+
{
|
62 |
+
"frame_length": self.frame_length,
|
63 |
+
"frame_step": self.frame_step,
|
64 |
+
"fft_length": self.fft_length,
|
65 |
+
"sampling_rate": self.sampling_rate,
|
66 |
+
"num_mel_channels": self.num_mel_channels,
|
67 |
+
"freq_min": self.freq_min,
|
68 |
+
"freq_max": self.freq_max,
|
69 |
+
}
|
70 |
+
)
|
71 |
+
return config
|
72 |
+
|
73 |
+
model = from_pretrained_keras("keras-io/MelGAN-spectrogram-inversion")
|
74 |
+
|
75 |
+
def inference(audio, model):
|
76 |
+
input, sr = librosa.load(audio)
|
77 |
+
# input, sr = audio
|
78 |
+
x = tf.expand_dims(input, axis=-1)
|
79 |
+
mel = MelSpec()(x)
|
80 |
+
audio_sample = tf.expand_dims(mel, axis=0)
|
81 |
+
pred = model.predict(audio_sample, batch_size=1, verbose=0)
|
82 |
+
return input, pred.squeeze(), sr
|
83 |
+
|
84 |
+
def predict(audio, micro):
|
85 |
+
|
86 |
+
input = audio if audio is not None else micro
|
87 |
+
x, x_pred, sr = inference(audio, model)
|
88 |
+
fig, ax = plt.subplots(nrows=2, ncols=1, sharex=True, figsize=(10, 8), dpi=120)
|
89 |
+
D = librosa.amplitude_to_db(np.abs(librosa.stft(x)), ref=np.max)
|
90 |
+
img = librosa.display.specshow(D, y_axis='linear', x_axis='time',
|
91 |
+
sr=sr, ax=ax[0])
|
92 |
+
ax[0].set(title='Spectrogram of Original sample audio')
|
93 |
+
ax[0].label_outer()
|
94 |
+
|
95 |
+
D = librosa.amplitude_to_db(np.abs(librosa.stft(x_pred)), ref=np.max)
|
96 |
+
img = librosa.display.specshow(D, y_axis='linear', x_axis='time',
|
97 |
+
sr=sr, ax=ax[1])
|
98 |
+
ax[1].set(title='Spectrogram of synthesis sample audio ')
|
99 |
+
ax[1].label_outer()
|
100 |
+
return plt.gcf()
|
101 |
+
|
102 |
+
inputs = [
|
103 |
+
gr.Audio(source = "upload", label='Upload audio file', type="filepath"),
|
104 |
+
gr.Audio(source = "microphone", label='Record audio from microphone', type="filepath")
|
105 |
+
]
|
106 |
+
|
107 |
+
examples = [
|
108 |
+
|
109 |
+
]
|
110 |
+
|
111 |
+
gr.Interface(
|
112 |
+
fn=predict,
|
113 |
+
title="MelGAN-based spectrogram inversion",
|
114 |
+
description = "Inversion of audio from mel-spectrograms using the MelGAN architecture and feature matching",
|
115 |
+
inputs=inputs,
|
116 |
+
examples=examples,
|
117 |
+
outputs=gr.Plot(),
|
118 |
+
article = "Author: <a href=\"https://huggingface.co/vumichien\">Vu Minh Chien</a>. Based on the keras example from <a href=\"https://keras.io/examples/audio/melgan_spectrogram_inversion/\">Darshan Deshpande</a>",
|
119 |
+
).launch(debug=False, enable_queue=True)
|