Spaces:
Build error
Build error
RobotJelly
commited on
Commit
•
6369381
1
Parent(s):
c31705d
app.py
Browse files
app.py
CHANGED
@@ -8,16 +8,10 @@ import gradio as gr
|
|
8 |
from huggingface_hub import from_pretrained_keras
|
9 |
|
10 |
model = from_pretrained_keras("RobotJelly/GauGAN-Image-generation")
|
11 |
-
|
12 |
-
def predict(image_file, segmentation_png, bitmap_img):
|
13 |
-
image_list = [segmentation_png, image_file, bitmap_img]
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
#labels = image_file.replace("images", "segmentation_labels").replace("jpg", "bmp")
|
18 |
-
#print("labels", labels)
|
19 |
|
20 |
-
|
21 |
|
22 |
image = tf.image.decode_png(tf.io.read_file(image_list[1]), channels=3)
|
23 |
image = tf.cast(image, tf.float32) / 127.5 - 1
|
@@ -26,6 +20,8 @@ def predict(image_file, segmentation_png, bitmap_img):
|
|
26 |
segmentation_file = tf.cast(segmentation_file, tf.float32)/127.5 - 1
|
27 |
|
28 |
label_file = tf.image.decode_bmp(tf.io.read_file(image_list[2]), channels=0)
|
|
|
|
|
29 |
label_file = tf.squeeze(label_file)
|
30 |
|
31 |
image_list = [segmentation_file, image, label_file]
|
@@ -54,18 +50,15 @@ def predict(image_file, segmentation_png, bitmap_img):
|
|
54 |
latent_vector = tf.random.normal(shape=(1, 256), mean=0.0, stddev=2.0)
|
55 |
|
56 |
# Generate fake images
|
57 |
-
# fake_image = tf.squeeze(model.predict([latent_vector, final_img_list[2]]), axis=0)
|
58 |
fake_image = model.predict([latent_vector, final_img_list[2]])
|
|
|
59 |
|
60 |
-
|
61 |
-
fake = Image.fromarray((fake_image[0]+1)/2)
|
62 |
-
# return tf.squeeze(real_images[1], axis=0), fake_image
|
63 |
-
return fake
|
64 |
|
65 |
# input
|
66 |
input = [gr.inputs.Image(type="filepath", label="Ground Truth - Real Image (jpg)"),
|
67 |
gr.inputs.Image(type="filepath", label="Segementated image (png)"),
|
68 |
-
gr.inputs.Image(type="filepath", label="corresponding bitmap image (bmp)")]
|
69 |
|
70 |
examples = [["facades_data/cmp_b0010.jpg", "facades_data/cmp_b0010.png", "facades_data/cmp_b0010.bmp"],
|
71 |
["facades_data/cmp_b0020.jpg", "facades_data/cmp_b0020.png", "facades_data/cmp_b0020.bmp"],
|
@@ -74,7 +67,7 @@ examples = [["facades_data/cmp_b0010.jpg", "facades_data/cmp_b0010.png", "facade
|
|
74 |
["facades_data/cmp_b0050.jpg", "facades_data/cmp_b0050.png", "facades_data/cmp_b0050.bmp"]]
|
75 |
|
76 |
# output
|
77 |
-
output = [gr.outputs.Image(type="
|
78 |
|
79 |
title = "GauGAN For Conditional Image Generation"
|
80 |
description = "Upload an Image or take one from examples to generate realistic images that are conditioned on cue images and segmentation maps"
|
|
|
8 |
from huggingface_hub import from_pretrained_keras
|
9 |
|
10 |
model = from_pretrained_keras("RobotJelly/GauGAN-Image-generation")
|
|
|
|
|
|
|
11 |
|
12 |
+
def predict(image_file, segmentation_png, bitmap_img):
|
|
|
|
|
|
|
13 |
|
14 |
+
image_list = [segmentation_png, image_file, bitmap_img]
|
15 |
|
16 |
image = tf.image.decode_png(tf.io.read_file(image_list[1]), channels=3)
|
17 |
image = tf.cast(image, tf.float32) / 127.5 - 1
|
|
|
20 |
segmentation_file = tf.cast(segmentation_file, tf.float32)/127.5 - 1
|
21 |
|
22 |
label_file = tf.image.decode_bmp(tf.io.read_file(image_list[2]), channels=0)
|
23 |
+
# label_file = tf.image.rgb_to_grayscale(tf.image.decode_bmp(tf.io.read_file(image_list[2]), channels=3))
|
24 |
+
#print("after decode_bmp --> ", label_file.shape, type(label_file))
|
25 |
label_file = tf.squeeze(label_file)
|
26 |
|
27 |
image_list = [segmentation_file, image, label_file]
|
|
|
50 |
latent_vector = tf.random.normal(shape=(1, 256), mean=0.0, stddev=2.0)
|
51 |
|
52 |
# Generate fake images
|
|
|
53 |
fake_image = model.predict([latent_vector, final_img_list[2]])
|
54 |
+
fake_img = tf.squeeze(fake_image, axis=0)
|
55 |
|
56 |
+
return np.array(fake_img)
|
|
|
|
|
|
|
57 |
|
58 |
# input
|
59 |
input = [gr.inputs.Image(type="filepath", label="Ground Truth - Real Image (jpg)"),
|
60 |
gr.inputs.Image(type="filepath", label="Segementated image (png)"),
|
61 |
+
gr.inputs.Image(type="filepath", label="corresponding bitmap image (bmp)", image_mode="L)]
|
62 |
|
63 |
examples = [["facades_data/cmp_b0010.jpg", "facades_data/cmp_b0010.png", "facades_data/cmp_b0010.bmp"],
|
64 |
["facades_data/cmp_b0020.jpg", "facades_data/cmp_b0020.png", "facades_data/cmp_b0020.bmp"],
|
|
|
67 |
["facades_data/cmp_b0050.jpg", "facades_data/cmp_b0050.png", "facades_data/cmp_b0050.bmp"]]
|
68 |
|
69 |
# output
|
70 |
+
output = [gr.outputs.Image(type="numpy", label="Generated - Conditioned Images")]
|
71 |
|
72 |
title = "GauGAN For Conditional Image Generation"
|
73 |
description = "Upload an Image or take one from examples to generate realistic images that are conditioned on cue images and segmentation maps"
|