harshaUwm163
removed the debug=True
29a1c97
raw
history blame
2.18 kB
import numpy as np
import tensorflow as tf
import gradio as gr
from huggingface_hub import from_pretrained_keras
import cv2
# import matplotlib.pyplot as plt
model = from_pretrained_keras("harsha163/CutMix_data_augmentation_for_image_classification")
# functions for inference
IMG_SIZE = 32
class_names = [
"Airplane",
"Automobile",
"Bird",
"Cat",
"Deer",
"Dog",
"Frog",
"Horse",
"Ship",
"Truck",
]
# resize the image and it to a float between 0,1
def preprocess_image(image, label):
image = tf.image.resize(image, (IMG_SIZE, IMG_SIZE))
image = tf.image.convert_image_dtype(image, tf.float32) / 255.0
return image, label
def read_image(image):
image = tf.convert_to_tensor(image)
image.set_shape([None, None, 3])
print('$$$$$$$$$$$$$$$$$$$$$ in read image $$$$$$$$$$$$$$$$$$$$$$')
print(image.shape)
# plt.imshow(image)
# plt.show()
# image = tf.image.resize(images=image, size=[IMG_SIZE, IMG_SIZE])
# image = image / 127.5 - 1
image, _ = preprocess_image(image, 1) # 1 here is a temporary label
return image
def infer(input_image):
print('#$$$$$$$$$$$$$$$$$$$$$$$$$ IN INFER $$$$$$$$$$$$$$$$$$$$$$$')
image_tensor = read_image(input_image)
print(image_tensor.shape)
predictions = model.predict(np.expand_dims((image_tensor), axis=0))
predictions = np.squeeze(predictions)
predictions = np.argmax(predictions) # , axis=2
predicted_label = class_names[predictions.item()]
return str(predicted_label)
# get the inputs
input = gr.inputs.Image(shape=(IMG_SIZE, IMG_SIZE))
# the app outputs two segmented images
output = [gr.outputs.Label()]
# it's good practice to pass examples, description and a title to guide users
examples = [["./content/examples/Frog.jpg"], ["./content/examples/Truck.jpg"]]
title = "Image classification"
description = "Upload an image or select from examples to classify it"
gr_interface = gr.Interface(infer, input, output, examples=examples, allow_flagging=False, analytics_enabled=False, title=title, description=description).launch(enable_queue=True, debug=False)
gr_interface.launch()