|
import numpy as np |
|
import tensorflow as tf |
|
import gradio as gr |
|
from huggingface_hub import from_pretrained_keras |
|
import cv2 |
|
|
|
|
|
|
|
model = from_pretrained_keras("harsha163/CutMix_data_augmentation_for_image_classification") |
|
|
|
|
|
IMG_SIZE = 32 |
|
|
|
class_names = [ |
|
"Airplane", |
|
"Automobile", |
|
"Bird", |
|
"Cat", |
|
"Deer", |
|
"Dog", |
|
"Frog", |
|
"Horse", |
|
"Ship", |
|
"Truck", |
|
] |
|
|
|
|
|
def preprocess_image(image, label): |
|
image = tf.image.resize(image, (IMG_SIZE, IMG_SIZE)) |
|
image = tf.image.convert_image_dtype(image, tf.float32) / 255.0 |
|
return image, label |
|
|
|
|
|
def read_image(image): |
|
image = tf.convert_to_tensor(image) |
|
image.set_shape([None, None, 3]) |
|
print('$$$$$$$$$$$$$$$$$$$$$ in read image $$$$$$$$$$$$$$$$$$$$$$') |
|
print(image.shape) |
|
|
|
|
|
|
|
|
|
image, _ = preprocess_image(image, 1) |
|
return image |
|
|
|
def infer(input_image): |
|
print('#$$$$$$$$$$$$$$$$$$$$$$$$$ IN INFER $$$$$$$$$$$$$$$$$$$$$$$') |
|
image_tensor = read_image(input_image) |
|
print(image_tensor.shape) |
|
predictions = model.predict(np.expand_dims((image_tensor), axis=0)) |
|
predictions = np.squeeze(predictions) |
|
predictions = np.argmax(predictions) |
|
predicted_label = class_names[predictions.item()] |
|
return str(predicted_label) |
|
|
|
|
|
|
|
input = gr.inputs.Image(shape=(IMG_SIZE, IMG_SIZE)) |
|
|
|
output = [gr.outputs.Label()] |
|
|
|
examples = [["./content/examples/Frog.jpg"], ["./content/examples/Truck.jpg"]] |
|
title = "Image classification" |
|
description = "Upload an image or select from examples to classify it" |
|
|
|
gr_interface = gr.Interface(infer, input, output, examples=examples, allow_flagging=False, analytics_enabled=False, title=title, description=description).launch(enable_queue=True, debug=False) |
|
gr_interface.launch() |
|
|