voyager / app.py
Melanit's picture
Create gradio app
efe549b
raw
history blame
2.27 kB
from huggingface_hub import from_pretrained_keras
import keras_cv
import gradio as gr
from tensorflow import keras
keras.mixed_precision.set_global_policy("mixed_float16")
resolution = 512
dreambooth_model = keras_cv.models.StableDiffusion(
img_width=resolution, img_height=resolution, jit_compile=True,
)
loaded_diffusion_model = from_pretrained_keras("melanit/dreambooth_voyager_v2")
dreambooth_model._diffusion_model = loaded_diffusion_model
def generate_images(prompt: str, negative_prompt:str, batch_size: int, num_steps: int):
"""
This function will infer the trained dreambooth (stable diffusion) model
Args:
prompt (str): The input text
batch_size (int): The number of images to be generated
num_steps (int): The number of denoising steps
Returns:
outputs (List): List of images that were generated using the model
"""
outputs = dreambooth_model.text_to_image(
prompt,
negative_prompt=negative_prompt,
batch_size=batch_size,
num_steps=num_steps,
)
return outputs
with gr.Blocks() as demo:
gr.HTML("<h2 style=\"font-size: 2rem; font-weight: 700; text-align: center;\">Keras Dreambooth - Voyager Demo</h2>")
with gr.Row():
with gr.Column():
prompt = gr.Textbox(lines=1, value="a photo of voyager spaceship", label="Prompt")
negative_prompt = gr.Textbox(lines=1, value="", label="Negative Prompt")
samples = gr.Slider(minimum=1, maximum=10, value=1, step=1, label="Number of Images")
num_steps = gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Denoising Steps")
run = gr.Button(value="Run")
with gr.Column():
gallery = gr.Gallery(label="Outputs").style(grid=(1,2))
run.click(generate_images, inputs=[prompt,negative_prompt, samples, num_steps], outputs=gallery)
gr.Examples([["photo of voyager spaceship in space, high quality, blender, 3d, trending on artstation, 8k","bad, ugly, malformed, deformed, out of frame, blurry", 1, 50]],
[prompt,negative_prompt, samples,num_steps], gallery, generate_images)
gr.Markdown('Demo created by [Lily Berkow](https://huggingface.co/melanit/)')
demo.launch()