Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import time
|
4 |
+
import openai
|
5 |
+
import pandas as pd
|
6 |
+
|
7 |
+
openai_api_key_textbox = ""
|
8 |
+
model = None
|
9 |
+
tokenizer = None
|
10 |
+
generator = None
|
11 |
+
csv_name = "disease_database_mini.csv"
|
12 |
+
df = pd.read_csv(csv_name)
|
13 |
+
openai.api_key = "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"
|
14 |
+
|
15 |
+
def csv_prompter(question,csv_name):
|
16 |
+
|
17 |
+
|
18 |
+
|
19 |
+
fulltext = "A question is provided below. Given the question, extract " + \
|
20 |
+
"keywords from the text. Focus on extracting the keywords that we can use " + \
|
21 |
+
"to best lookup answers to the question. \n" + \
|
22 |
+
"---------------------\n" + \
|
23 |
+
"{}\n".format(question) + \
|
24 |
+
"---------------------\n" + \
|
25 |
+
"Provide keywords in the following comma-separated format.\nKeywords: "
|
26 |
+
|
27 |
+
messages = [
|
28 |
+
{"role": "system", "content": ""},
|
29 |
+
]
|
30 |
+
messages.append(
|
31 |
+
{"role": "user", "content": f"{fulltext}"}
|
32 |
+
)
|
33 |
+
rsp = openai.ChatCompletion.create(
|
34 |
+
model="gpt-3.5-turbo",
|
35 |
+
messages=messages
|
36 |
+
)
|
37 |
+
keyword_list = rsp.get("choices")[0]["message"]["content"]
|
38 |
+
keyword_list = keyword_list.replace(",","").split(" ")
|
39 |
+
|
40 |
+
print(keyword_list)
|
41 |
+
divided_text = []
|
42 |
+
csvdata = df.to_dict('records')
|
43 |
+
step_length = 15
|
44 |
+
for csv_item in range(0,len(csvdata),step_length):
|
45 |
+
csv_text = str(csvdata[csv_item:csv_item+step_length]).replace("}, {", "\n\n").replace("\"", "")#.replace("[", "").replace("]", "")
|
46 |
+
divided_text.append(csv_text)
|
47 |
+
|
48 |
+
answer_llm = ""
|
49 |
+
|
50 |
+
score_textlist = [0] * len(divided_text)
|
51 |
+
|
52 |
+
for i, chunk in enumerate(divided_text):
|
53 |
+
for t, keyw in enumerate(keyword_list):
|
54 |
+
if keyw.lower() in chunk.lower():
|
55 |
+
score_textlist[i] = score_textlist[i] + 1
|
56 |
+
|
57 |
+
answer_list = []
|
58 |
+
divided_text = [item for _, item in sorted(zip(score_textlist, divided_text), reverse=True)]
|
59 |
+
|
60 |
+
for i, chunk in enumerate(divided_text):
|
61 |
+
|
62 |
+
if i>4:
|
63 |
+
continue
|
64 |
+
|
65 |
+
fulltext = "{}".format(chunk) + \
|
66 |
+
"\n---------------------\n" + \
|
67 |
+
"Based on the Table above and not prior knowledge, " + \
|
68 |
+
"Select the Table Entries that will help to answer the question: {}\n Output in the format of \" Disease: <>; Symptom: <>; Medical Test: <>; Medications: <>;\". If there is no useful form entries, output: 'No Entry'".format(question)
|
69 |
+
|
70 |
+
print(fulltext)
|
71 |
+
messages = [
|
72 |
+
{"role": "system", "content": ""},
|
73 |
+
]
|
74 |
+
messages.append(
|
75 |
+
{"role": "user", "content": f"{fulltext}"}
|
76 |
+
)
|
77 |
+
rsp = openai.ChatCompletion.create(
|
78 |
+
model="gpt-3.5-turbo",
|
79 |
+
messages=messages
|
80 |
+
)
|
81 |
+
answer_llm = rsp.get("choices")[0]["message"]["content"]
|
82 |
+
|
83 |
+
print("\nAnswer: " + answer_llm)
|
84 |
+
print()
|
85 |
+
if not "No Entry" in answer_llm:
|
86 |
+
answer_list.append(answer_llm)
|
87 |
+
|
88 |
+
|
89 |
+
|
90 |
+
fulltext = "The original question is as follows: {}\n".format(question) + \
|
91 |
+
"Based on this Table:\n" + \
|
92 |
+
"------------\n" + \
|
93 |
+
"{}\n".format(str("\n\n".join(answer_list))) + \
|
94 |
+
"------------\n" + \
|
95 |
+
"Answer: "
|
96 |
+
print(fulltext)
|
97 |
+
messages = [
|
98 |
+
{"role": "system", "content": ""},
|
99 |
+
]
|
100 |
+
messages.append(
|
101 |
+
{"role": "user", "content": f"{fulltext}"}
|
102 |
+
)
|
103 |
+
rsp = openai.ChatCompletion.create(
|
104 |
+
model="gpt-3.5-turbo",
|
105 |
+
messages=messages
|
106 |
+
)
|
107 |
+
answer_llm = rsp.get("choices")[0]["message"]["content"]
|
108 |
+
|
109 |
+
print("\nFinal Answer: " + answer_llm)
|
110 |
+
print()
|
111 |
+
|
112 |
+
return answer_llm
|
113 |
+
|
114 |
+
|
115 |
+
|
116 |
+
with gr.Blocks() as demo:
|
117 |
+
gr.Markdown("# Autonomous ChatDoctor (openai version), based on disease database knowledge")
|
118 |
+
gr.Markdown("## Example: If I have frontal headache, fever, and painful sinuses, what disease should I have, and what medical test should I take?")
|
119 |
+
gr.Markdown("Our model will answer based on the content of the excel below, so please try to ask questions based on the table content.")
|
120 |
+
|
121 |
+
chatbot = gr.Chatbot()
|
122 |
+
msg = gr.Textbox()
|
123 |
+
clear = gr.Button("Clear")
|
124 |
+
Initialization = gr.Button("Initialization")
|
125 |
+
|
126 |
+
def restart(history):
|
127 |
+
invitation = "ChatDoctor: "
|
128 |
+
human_invitation = "Patient: "
|
129 |
+
return [[" \n",invitation+" I am ChatDoctor, what medical questions do you have?"]]
|
130 |
+
|
131 |
+
def user(user_message, history):
|
132 |
+
invitation = "ChatDoctor: "
|
133 |
+
human_invitation = "Patient: "
|
134 |
+
return "", history +[[human_invitation+user_message, None]]
|
135 |
+
|
136 |
+
def bot(history):
|
137 |
+
invitation = "ChatDoctor: "
|
138 |
+
human_invitation = "Patient: "
|
139 |
+
print(history)
|
140 |
+
|
141 |
+
|
142 |
+
question = ""
|
143 |
+
for each_ques in history:
|
144 |
+
question = question+ each_ques[0].replace("Patient: ","")+" \n"
|
145 |
+
|
146 |
+
response = csv_prompter(question,csv_name)
|
147 |
+
|
148 |
+
response = invitation+ response
|
149 |
+
history[-1][1] = response
|
150 |
+
|
151 |
+
return history
|
152 |
+
|
153 |
+
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
|
154 |
+
bot, chatbot, chatbot
|
155 |
+
)
|
156 |
+
clear.click(lambda: None, None, chatbot, queue=False).then(restart, chatbot, chatbot)
|
157 |
+
Initialization.click(lambda: None, None, chatbot, queue=False).then(restart, chatbot, chatbot)
|
158 |
+
|
159 |
+
|
160 |
+
|
161 |
+
if __name__ == "__main__":
|
162 |
+
demo.launch()
|
163 |
+
|