Spaces:
Sleeping
Sleeping
import spaces | |
import os | |
from dotenv import load_dotenv | |
import re | |
from urllib.parse import urlparse | |
import pandas as pd | |
import unicodedata as uni | |
import emoji | |
from langchain_openai import ChatOpenAI | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain_community.document_loaders import DataFrameLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_community.vectorstores import FAISS | |
from langchain.chains import RetrievalQA | |
import gradio as gr | |
import logging | |
import requests | |
# Load environment variables | |
load_dotenv() | |
# Set command line arguments for Gradio | |
os.environ["COMMANDLINE_ARGS"] = "--no-gradio-queue" | |
# Configure logging | |
logging.basicConfig( | |
level=logging.DEBUG, | |
format="%(asctime)s [%(levelname)s] %(message)s", | |
handlers=[logging.StreamHandler()], | |
) | |
logger = logging.getLogger(__name__) | |
import http.client | |
http.client.HTTPConnection.debuglevel = 1 | |
req_log = logging.getLogger("requests.packages.urllib3") | |
req_log.setLevel(logging.DEBUG) | |
req_log.propagate = True | |
# Constants | |
LIMIT = 1000 # Limit to 1000 reviews to avoid long processing times | |
OpenAIModel = "gpt-3.5-turbo" | |
shop_id = "" | |
item_id = "" | |
item = {} | |
cache_URL = "" | |
db = None | |
qa = None | |
cache = {} | |
import json | |
# Function to request product ID from Tokopedia | |
def request_product_id(shop_domain, product_key, url): | |
endpoint = "https://gql.tokopedia.com/graphql/PDPGetLayoutQuery" | |
payload = { | |
"operationName": "PDPGetLayoutQuery", | |
"variables": { | |
"shopDomain": f"{shop_domain}", | |
"productKey": f"{product_key}", | |
"apiVersion": 1, | |
}, | |
"query": "fragment ProductVariant on pdpDataProductVariant { errorCode parentID defaultChild children { productID } __typename } query PDPGetLayoutQuery($shopDomain: String, $productKey: String, $layoutID: String, $apiVersion: Float, $userLocation: pdpUserLocation, $extParam: String, $tokonow: pdpTokoNow, $deviceID: String) { pdpGetLayout(shopDomain: $shopDomain, productKey: $productKey, layoutID: $layoutID, apiVersion: $apiVersion, userLocation: $userLocation, extParam: $extParam, tokonow: $tokonow, deviceID: $deviceID) { requestID name pdpSession basicInfo { id: productID } components { name type position data { ...ProductVariant __typename } __typename } __typename } }", | |
} | |
headers = { | |
"User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/118.0.0.0 Safari/537.36", | |
"Referer": "https://www.tokopedia.com", | |
"X-TKPD-AKAMAI": "pdpGetLayout", | |
} | |
return requests.request( | |
method="POST", url=endpoint, json=payload, headers=headers, timeout=30 | |
) | |
# Function to request product reviews from Tokopedia | |
def request_product_review(product_id, page=1, limit=20): | |
ENDPOINT = "https://gql.tokopedia.com/graphql/productReviewList" | |
payload = { | |
"operationName": "productReviewList", | |
"variables": { | |
"productID": f"{product_id}", | |
"page": page, | |
"limit": limit, | |
"sortBy": "", | |
"filterBy": "", | |
}, | |
"query": """query productReviewList($productID: String!, $page: Int!, $limit: Int!, $sortBy: String, $filterBy: String) { | |
productrevGetProductReviewList(productID: $productID, page: $page, limit: $limit, sortBy: $sortBy, filterBy: $filterBy) { | |
productID | |
list { | |
id: feedbackID | |
variantName | |
message | |
productRating | |
reviewCreateTime | |
reviewCreateTimestamp | |
isReportable | |
isAnonymous | |
reviewResponse { | |
message | |
createTime | |
__typename | |
} | |
user { | |
userID | |
fullName | |
image | |
url | |
__typename | |
} | |
likeDislike { | |
totalLike | |
likeStatus | |
__typename | |
} | |
stats { | |
key | |
formatted | |
count | |
__typename | |
} | |
badRatingReasonFmt | |
__typename | |
} | |
shop { | |
shopID | |
name | |
url | |
image | |
__typename | |
} | |
hasNext | |
totalReviews | |
__typename | |
} | |
} | |
""", | |
} | |
headers = { | |
"User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/118.0.0.0 Safari/537.36", | |
"Referer": "https://www.tokopedia.com", | |
"X-TKPD-AKAMAI": "productReviewList", | |
} | |
try: | |
response = requests.post(ENDPOINT, json=payload, headers=headers, timeout=60) | |
response.raise_for_status() | |
logger.info(f"Request successful. Status code: {response.status_code}") | |
return response | |
except requests.exceptions.RequestException as e: | |
logger.error(f"Request failed: {e}") | |
return None | |
# Function to scrape reviews for a product | |
def scrape(product_id, max_reviews=LIMIT): | |
all_reviews = [] | |
page = 1 | |
has_next = True | |
logger.info("Extracting product reviews...") | |
while has_next and len(all_reviews) < max_reviews: | |
response = request_product_review(product_id, page=page) | |
if not response: | |
break | |
data = response.json()["data"]["productrevGetProductReviewList"] | |
reviews = data["list"] | |
all_reviews.extend(reviews) | |
has_next = data["hasNext"] | |
page += 1 | |
reviews_df = pd.json_normalize(all_reviews) | |
reviews_df.rename(columns={"message": "comment"}, inplace=True) | |
reviews_df = reviews_df[["comment"]] | |
logger.info(reviews_df.head()) | |
return reviews_df | |
# Function to extract product ID from URL | |
def get_product_id(URL): | |
parsed_url = urlparse(URL) | |
*_, shop, product_key = parsed_url.path.split("/") | |
response = request_product_id(shop, product_key, URL) | |
if response: | |
product_id = response.json()["data"]["pdpGetLayout"]["basicInfo"]["id"] | |
logger.info(f"Product ID: {product_id}") | |
return product_id | |
else: | |
logger.error("Failed to get product ID") | |
return None | |
# Function to clean the reviews DataFrame | |
def clean(df): | |
df = df.dropna().copy().reset_index(drop=True) # Drop reviews with empty comments | |
df = df[df["comment"] != ""].reset_index(drop=True) # Remove empty reviews | |
df["comment"] = df["comment"].apply(lambda x: clean_text(x)) # Clean text | |
df = df[df["comment"] != ""].reset_index(drop=True) # Remove empty reviews | |
logger.info("Cleaned reviews DataFrame") | |
return df | |
# Function to clean individual text entries | |
def clean_text(text): | |
text = uni.normalize("NFKD", text) # Normalize characters | |
text = emoji.replace_emoji(text, "") # Remove emoji | |
text = re.sub(r"(\w)\1{2,}", r"\1", text) # Remove repeated characters | |
text = re.sub(r"[ ]+", " ", text).strip() # Remove extra spaces | |
return text | |
# Initialize LLM and embeddings | |
llm = ChatOpenAI(model=OpenAIModel, temperature=0.1) | |
embeddings = HuggingFaceEmbeddings(model_name="LazarusNLP/all-indobert-base-v2") | |
# Function to generate a summary or answer based on reviews | |
async def generate(URL, query): | |
global cache_URL, db, qa, cache | |
if not URL or not query: | |
return "Input kosong" | |
try: | |
product_id = get_product_id(URL) | |
if not product_id: | |
return "Gagal mendapatkan product ID" | |
if URL not in cache: | |
reviews = scrape(product_id) | |
if reviews.empty: | |
return "Tidak ada ulasan ditemukan" | |
cleaned_reviews = clean(reviews) | |
loader = DataFrameLoader(cleaned_reviews, page_content_column="comment") | |
documents = loader.load() | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=1000, chunk_overlap=50 | |
) | |
docs = text_splitter.split_documents(documents) | |
db = FAISS.from_documents(docs, embeddings) | |
cache[URL] = (docs, db) | |
else: | |
docs, db = cache[URL] | |
qa = RetrievalQA.from_chain_type(llm=llm, retriever=db.as_retriever()) | |
res = await qa.ainvoke(query) | |
return res["result"] | |
except Exception as e: | |
logger.error(f"Error in generating response: {e}") | |
return "Gagal mendapatkan review dari URL" | |
# Set up Gradio interface | |
product_box = gr.Textbox(label="URL Produk", placeholder="URL produk dari Tokopedia") | |
query_box = gr.Textbox( | |
lines=2, | |
label="Kueri", | |
placeholder="Contoh: Apa yang orang katakan tentang kualitas produknya?, Bagaimana pendapat orang yang kurang puas dengan produknya?", | |
) | |
gr.Interface( | |
fn=generate, | |
inputs=[product_box, query_box], | |
outputs=[gr.Textbox(label="Jawaban")], | |
title="RingkasUlas", | |
description="Bot percakapan yang bisa meringkas ulasan-ulasan produk di Tokopedia Indonesia (https://tokopedia.com/). Harap bersabar, bot ini dapat memakan waktu agak lama saat mengambil ulasan dari Tokopedia dan menyiapkan jawabannya.", | |
allow_flagging="never", | |
).launch(debug=True) | |