Spaces:
Running
Running
import streamlit as st | |
from PyPDF2 import PdfReader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
import os | |
from langchain_google_genai import GoogleGenerativeAIEmbeddings | |
import google.generativeai as genai | |
from langchain_community.vectorstores import FAISS | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
from langchain.chains.question_answering import load_qa_chain | |
from langchain.prompts import PromptTemplate | |
from dotenv import load_dotenv | |
import shutil | |
import argparse | |
PDF_PATH=os.path.join(os.path.dirname(__file__), "docs") | |
def load_pdfs(): | |
faiss_index_path = os.path.join(os.path.dirname(__file__), "faiss_index") | |
if os.path.exists(faiss_index_path): | |
return | |
pdfs = [f for f in os.listdir(PDF_PATH) if os.path.isfile(os.path.join(PDF_PATH, f))] | |
text="" | |
for pdf in pdfs: | |
print("process PDF: %s..." % pdf) | |
pdf_reader= PdfReader(os.path.join(PDF_PATH, pdf)) | |
for page in pdf_reader.pages: | |
text+= page.extract_text() | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000) | |
text_chunks = text_splitter.split_text(text) | |
embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001") | |
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings) | |
vector_store.save_local("faiss_index") | |
return text | |
def get_conversational_chain(): | |
prompt_template = """ | |
Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in | |
provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n | |
Context:\n {context}?\n | |
Question: \n{question}\n | |
Answer: | |
""" | |
model = ChatGoogleGenerativeAI(model="gemini-pro", | |
temperature=0.3) | |
prompt = PromptTemplate(template = prompt_template, input_variables = ["context", "question"]) | |
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt) | |
return chain | |
def user_input(user_question): | |
embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001") | |
new_db = FAISS.load_local("faiss_index", embeddings) | |
docs = new_db.similarity_search(user_question) | |
chain = get_conversational_chain() | |
response = chain( | |
{"input_documents":docs, "question": user_question} | |
, return_only_outputs=True) | |
print(response) | |
st.write("Reply: ", response["output_text"]) | |
def main(): | |
load_pdfs() | |
st.set_page_config("TDX Doctor") | |
st.header("Please ask questions related to TDX or UEFI") | |
st.markdown("Ask a question like following styles:") | |
st.markdown("- please describe EFI PEI Core in 200 words.") | |
st.markdown("- please describe intel tdx in 200 words.") | |
st.markdown("- please explain SEAMCALL in 200 words.") | |
user_question = st.text_input("input", label_visibility="hidden") | |
if user_question: | |
user_input(user_question) | |
if __name__ == "__main__": | |
main() |