Spaces:
Runtime error
Runtime error
| from transformers import AutoModel, AutoTokenizer, LlamaTokenizer, LlamaForCausalLM | |
| import gradio as gr | |
| import torch | |
| import os | |
| import io | |
| import sys | |
| import platform | |
| import intel_extension_for_pytorch as ipex | |
| import intel_extension_for_pytorch._C as ipex_core | |
| from cpuinfo import get_cpu_info | |
| from contextlib import redirect_stdout | |
| DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
| ROOT = '/' | |
| SELF_ROOT = '/proc/self/root' | |
| tokenizer = LlamaTokenizer.from_pretrained( | |
| "lmsys/vicuna-7b-v1.3", trust_remote_code=True | |
| ) | |
| model = LlamaForCausalLM.from_pretrained( | |
| "lmsys/vicuna-7b-v1.3", trust_remote_code=True | |
| ).to(DEVICE) | |
| model = model.eval() | |
| def in_chroot(): | |
| ''' | |
| Return true if running in a chroot environment. | |
| ''' | |
| try: | |
| root_stat = os.stat(ROOT) | |
| self_stat = os.stat(SELF_ROOT) | |
| except FileNotFoundError as e: | |
| sys.exit(f"ERROR: Failed to stat: {e}") | |
| root_inode = root_stat.st_ino | |
| self_inode = self_stat.st_ino | |
| # Inode 2 is the root inode for most filesystems. | |
| # However, XFS uses 128 for root. | |
| if root_inode not in [2, 128]: | |
| return True | |
| return not (root_inode == self_inode) | |
| def get_features(): | |
| ''' | |
| Returns a dictionary of all feature: | |
| key: feature name. | |
| value: Boolean showing if feature available. | |
| ''' | |
| cpu_info = get_cpu_info() | |
| flags = cpu_info["flags"] | |
| detect_ipex_amx_enabled = lambda: ipex_core._get_current_isa_level() == 'AMX' | |
| detect_ipex_amx_available = ( | |
| lambda: ipex_core._get_highest_cpu_support_isa_level() == 'AMX' | |
| ) | |
| features = { | |
| 'VM': 'hypervisor' in flags, | |
| 'TDX TD': 'tdx_guest' in flags, | |
| 'AMX available': 'amx_tile' in flags, | |
| 'AMX-BF16 available': 'amx_bf16' in flags, | |
| 'AMX-INT8 available': 'amx_int8' in flags, | |
| 'AVX-VNNI available': 'avx_vnni' in flags, | |
| 'AVX512-VNNI available': 'avx512_vnni' in flags, | |
| 'AVX512-FP16 available': 'avx512_fp16' in flags, | |
| 'AVX512-BF16 available': 'avx512_bf16' in flags, | |
| 'AMX IPEX available': detect_ipex_amx_available(), | |
| 'AMX IPEX enabled': detect_ipex_amx_enabled(), | |
| } | |
| return features | |
| def get_debug_details(): | |
| ''' | |
| Return a block of markdown text that shows useful debug | |
| information. | |
| ''' | |
| # ipex.version() prints to stdout, so redirect stdout to | |
| # capture the output. | |
| buffer = io.StringIO() | |
| with redirect_stdout(buffer): | |
| ipex.version() | |
| ipex_version_details = buffer.getvalue().replace("\n", ", ") | |
| ipex_current_isa_level = ipex_core._get_current_isa_level() | |
| ipex_max_isa_level = ipex_core._get_highest_cpu_support_isa_level() | |
| ipex_env_var = os.getenv('ATEN_CPU_CAPABILITY') | |
| onednn_env_var = os.getenv('ONEDNN_MAX_CPU_ISA') | |
| in_chroot_result = in_chroot() | |
| cpu_info = get_cpu_info() | |
| flags = cpu_info["flags"] | |
| # Note that rather than using `<details>`, we could use gradio.Accordian(), | |
| # but the markdown version is more visually compact. | |
| md = f""" | |
| <details> | |
| <summary>Click to show debug details</summary> | |
| | Feature | Value | | |
| |-|-| | |
| | Arch | `{cpu_info['arch']}` | | |
| | CPU | `{cpu_info['brand_raw']}` | | |
| | CPU flags | `{flags}` | | |
| | Python version | `{sys.version}` (implementation: `{platform.python_implementation()}`) | | |
| | Python version details | `{sys.version_info}` | | |
| | PyTorch version | `{torch.__version__}` | | |
| | IPEX version | `{ipex.ipex_version}` | | |
| | IPEX CPU detected | `{ipex_core._has_cpu()}` | | |
| | IPEX XPU detected | `{ipex_core._has_xpu()}` | | |
| | IPEX version details | `{ipex_version_details}` | | |
| | IPEX env var `ATEN_CPU_CAPABILITY` | `{ipex_env_var}` | | |
| | IPEX current ISA level | `{ipex_current_isa_level}` | | |
| | IPEX max ISA level | `{ipex_max_isa_level}` | | |
| | oneDNN env var `ONEDNN_MAX_CPU_ISA` | `{onednn_env_var}` | | |
| | in chroot | `{in_chroot_result}` | | |
| </details> | |
| """ | |
| return md | |
| def predict(input, history=None): | |
| if history is None: | |
| history = [] | |
| new_user_input_ids = tokenizer.encode( | |
| input + tokenizer.eos_token, return_tensors='pt' | |
| ) | |
| bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1) | |
| history = model.generate( | |
| bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id | |
| ).tolist() | |
| # convert the tokens to text, and then split the responses into the right format | |
| response = tokenizer.decode(history[0]).split("<|endoftext|>") | |
| response = [ | |
| (response[i], response[i + 1]) for i in range(0, len(response) - 1, 2) | |
| ] # convert to tuples of list | |
| return response, history | |
| with gr.Blocks() as demo: | |
| gr.Markdown( | |
| '''## Confidential HuggingFace Runner | |
| ''' | |
| ) | |
| state = gr.State([]) | |
| chatbot = gr.Chatbot([], elem_id="chatbot").style(height=400) | |
| with gr.Row(): | |
| with gr.Column(scale=4): | |
| txt = gr.Textbox( | |
| show_label=False, placeholder="Enter text and press enter" | |
| ).style(container=False) | |
| with gr.Column(scale=1): | |
| button = gr.Button("Generate") | |
| txt.submit(predict, [txt, state], [chatbot, state]) | |
| button.click(predict, [txt, state], [chatbot, state]) | |
| with gr.Row(): | |
| features_dict = get_features() | |
| all_features = features_dict.keys() | |
| # Get a list of feature names that are actually set/available | |
| set_features = [key for key in features_dict if features_dict[key]] | |
| gr.CheckboxGroup( | |
| all_features, | |
| label="Features", | |
| # Make the boxes read-only | |
| interactive=False, | |
| # Specify which features were detected | |
| value=set_features, | |
| info="Features detected from environment", | |
| ) | |
| with gr.Row(): | |
| debug_details = get_debug_details() | |
| gr.Markdown(debug_details) | |
| demo.queue().launch(share=True, server_name="0.0.0.0") | |