litellmlope / litellm /tests /test_least_busy_routing.py
ka1kuk's picture
Upload 235 files
7db0ae4 verified
raw
history blame
8.5 kB
#### What this tests ####
# This tests the router's ability to identify the least busy deployment
import sys, os, asyncio, time, random
import traceback
from dotenv import load_dotenv
load_dotenv()
import os
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import pytest
from litellm import Router
import litellm
from litellm.router_strategy.least_busy import LeastBusyLoggingHandler
from litellm.caching import DualCache
### UNIT TESTS FOR LEAST BUSY LOGGING ###
def test_model_added():
test_cache = DualCache()
least_busy_logger = LeastBusyLoggingHandler(router_cache=test_cache, model_list=[])
kwargs = {
"litellm_params": {
"metadata": {
"model_group": "gpt-3.5-turbo",
"deployment": "azure/chatgpt-v-2",
},
"model_info": {"id": "1234"},
}
}
least_busy_logger.log_pre_api_call(model="test", messages=[], kwargs=kwargs)
request_count_api_key = f"gpt-3.5-turbo_request_count"
assert test_cache.get_cache(key=request_count_api_key) is not None
def test_get_available_deployments():
test_cache = DualCache()
least_busy_logger = LeastBusyLoggingHandler(router_cache=test_cache, model_list=[])
model_group = "gpt-3.5-turbo"
deployment = "azure/chatgpt-v-2"
kwargs = {
"litellm_params": {
"metadata": {
"model_group": model_group,
"deployment": deployment,
},
"model_info": {"id": "1234"},
}
}
least_busy_logger.log_pre_api_call(model="test", messages=[], kwargs=kwargs)
request_count_api_key = f"{model_group}_request_count"
assert test_cache.get_cache(key=request_count_api_key) is not None
# test_get_available_deployments()
def test_router_get_available_deployments():
"""
Tests if 'get_available_deployments' returns the least busy deployment
"""
model_list = [
{
"model_name": "azure-model",
"litellm_params": {
"model": "azure/gpt-turbo",
"api_key": "os.environ/AZURE_FRANCE_API_KEY",
"api_base": "https://openai-france-1234.openai.azure.com",
"rpm": 1440,
},
"model_info": {"id": 1},
},
{
"model_name": "azure-model",
"litellm_params": {
"model": "azure/gpt-35-turbo",
"api_key": "os.environ/AZURE_EUROPE_API_KEY",
"api_base": "https://my-endpoint-europe-berri-992.openai.azure.com",
"rpm": 6,
},
"model_info": {"id": 2},
},
{
"model_name": "azure-model",
"litellm_params": {
"model": "azure/gpt-35-turbo",
"api_key": "os.environ/AZURE_CANADA_API_KEY",
"api_base": "https://my-endpoint-canada-berri992.openai.azure.com",
"rpm": 6,
},
"model_info": {"id": 3},
},
]
router = Router(
model_list=model_list,
routing_strategy="least-busy",
set_verbose=False,
num_retries=3,
) # type: ignore
router.leastbusy_logger.test_flag = True
model_group = "azure-model"
deployment = "azure/chatgpt-v-2"
request_count_dict = {1: 10, 2: 54, 3: 100}
cache_key = f"{model_group}_request_count"
router.cache.set_cache(key=cache_key, value=request_count_dict)
deployment = router.get_available_deployment(model=model_group, messages=None)
print(f"deployment: {deployment}")
assert deployment["model_info"]["id"] == 1
## run router completion - assert completion event, no change in 'busy'ness once calls are complete
router.completion(
model=model_group,
messages=[{"role": "user", "content": "Hey, how's it going?"}],
)
return_dict = router.cache.get_cache(key=cache_key)
assert router.leastbusy_logger.logged_success == 1
assert return_dict[1] == 10
assert return_dict[2] == 54
assert return_dict[3] == 100
## Test with Real calls ##
@pytest.mark.asyncio
async def test_router_atext_completion_streaming():
prompt = "Hello, can you generate a 500 words poem?"
model = "azure-model"
model_list = [
{
"model_name": "azure-model",
"litellm_params": {
"model": "azure/gpt-turbo",
"api_key": "os.environ/AZURE_FRANCE_API_KEY",
"api_base": "https://openai-france-1234.openai.azure.com",
"rpm": 1440,
},
"model_info": {"id": 1},
},
{
"model_name": "azure-model",
"litellm_params": {
"model": "azure/gpt-35-turbo",
"api_key": "os.environ/AZURE_EUROPE_API_KEY",
"api_base": "https://my-endpoint-europe-berri-992.openai.azure.com",
"rpm": 6,
},
"model_info": {"id": 2},
},
{
"model_name": "azure-model",
"litellm_params": {
"model": "azure/gpt-35-turbo",
"api_key": "os.environ/AZURE_CANADA_API_KEY",
"api_base": "https://my-endpoint-canada-berri992.openai.azure.com",
"rpm": 6,
},
"model_info": {"id": 3},
},
]
router = Router(
model_list=model_list,
routing_strategy="least-busy",
set_verbose=False,
num_retries=3,
) # type: ignore
### Call the async calls in sequence, so we start 1 call before going to the next.
## CALL 1
await asyncio.sleep(random.uniform(0, 2))
await router.atext_completion(model=model, prompt=prompt, stream=True)
## CALL 2
await asyncio.sleep(random.uniform(0, 2))
await router.atext_completion(model=model, prompt=prompt, stream=True)
## CALL 3
await asyncio.sleep(random.uniform(0, 2))
await router.atext_completion(model=model, prompt=prompt, stream=True)
cache_key = f"{model}_request_count"
## check if calls equally distributed
cache_dict = router.cache.get_cache(key=cache_key)
for k, v in cache_dict.items():
assert v == 1
# asyncio.run(test_router_atext_completion_streaming())
@pytest.mark.asyncio
async def test_router_completion_streaming():
messages = [
{"role": "user", "content": "Hello, can you generate a 500 words poem?"}
]
model = "azure-model"
model_list = [
{
"model_name": "azure-model",
"litellm_params": {
"model": "azure/gpt-turbo",
"api_key": "os.environ/AZURE_FRANCE_API_KEY",
"api_base": "https://openai-france-1234.openai.azure.com",
"rpm": 1440,
},
"model_info": {"id": 1},
},
{
"model_name": "azure-model",
"litellm_params": {
"model": "azure/gpt-35-turbo",
"api_key": "os.environ/AZURE_EUROPE_API_KEY",
"api_base": "https://my-endpoint-europe-berri-992.openai.azure.com",
"rpm": 6,
},
"model_info": {"id": 2},
},
{
"model_name": "azure-model",
"litellm_params": {
"model": "azure/gpt-35-turbo",
"api_key": "os.environ/AZURE_CANADA_API_KEY",
"api_base": "https://my-endpoint-canada-berri992.openai.azure.com",
"rpm": 6,
},
"model_info": {"id": 3},
},
]
router = Router(
model_list=model_list,
routing_strategy="least-busy",
set_verbose=False,
num_retries=3,
) # type: ignore
### Call the async calls in sequence, so we start 1 call before going to the next.
## CALL 1
await asyncio.sleep(random.uniform(0, 2))
await router.acompletion(model=model, messages=messages, stream=True)
## CALL 2
await asyncio.sleep(random.uniform(0, 2))
await router.acompletion(model=model, messages=messages, stream=True)
## CALL 3
await asyncio.sleep(random.uniform(0, 2))
await router.acompletion(model=model, messages=messages, stream=True)
cache_key = f"{model}_request_count"
## check if calls equally distributed
cache_dict = router.cache.get_cache(key=cache_key)
for k, v in cache_dict.items():
assert v == 1