Spaces:
Running
on
Zero
Running
on
Zero
from optimization_pipeline import OptimizationPipeline | |
from utils.config import load_yaml, modify_input_for_ranker, validate_generation_config, override_config | |
import argparse | |
import os | |
from estimator.estimator_llm import LLMEstimator | |
# General Training Parameters | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--generation_config_path', default='config/config_diff/config_generation.yml', type=str, help='Configuration file path') | |
parser.add_argument('--ranker_config_path', default='config/config_diff/config_ranking.yml', type=str, help='Configuration file path') | |
parser.add_argument('--task_description', | |
default='', | |
required=False, type=str, help='Describing the task') | |
parser.add_argument('--prompt', | |
default='', | |
required=False, type=str, help='Prompt to use as initial.') | |
parser.add_argument('--load_dump', default='', required=False, type=str, help='In case of loading from checkpoint') | |
parser.add_argument('--output_dump', default='dump', required=False, type=str, help='Output to save checkpoints') | |
parser.add_argument('--num_ranker_steps', default=20, type=int, help='Number of iterations') | |
parser.add_argument('--num_generation_steps', default=20, type=int, help='Number of iterations') | |
opt = parser.parse_args() | |
ranker_config_params = override_config(opt.ranker_config_path) | |
generation_config_params = override_config(opt.generation_config_path) | |
validate_generation_config(ranker_config_params, generation_config_params) | |
if opt.task_description == '': | |
task_description = input("Describe the task: ") | |
else: | |
task_description = opt.task_description | |
if opt.prompt == '': | |
initial_prompt = input("Initial prompt: ") | |
else: | |
initial_prompt = opt.prompt | |
ranker_pipeline = OptimizationPipeline(ranker_config_params, output_path=os.path.join(opt.output_dump, 'ranker')) | |
if opt.load_dump != '': | |
ranker_pipeline.load_state(os.path.join(opt.load_dump, 'ranker')) | |
ranker_pipeline.predictor.init_chain(ranker_config_params.dataset.label_schema) | |
if (ranker_pipeline.cur_prompt is None) or (ranker_pipeline.task_description is None): | |
ranker_mod_prompt, ranker_mod_task_desc = modify_input_for_ranker(ranker_config_params, task_description, | |
initial_prompt) | |
ranker_pipeline.cur_prompt = ranker_mod_prompt | |
ranker_pipeline.task_description = ranker_mod_task_desc | |
best_prompt = ranker_pipeline.run_pipeline(opt.num_ranker_steps) | |
generation_config_params.eval.function_params = ranker_config_params.predictor.config | |
generation_config_params.eval.function_params.instruction = best_prompt['prompt'] | |
generation_config_params.eval.function_params.label_schema = ranker_config_params.dataset.label_schema | |
generation_pipeline = OptimizationPipeline(generation_config_params, task_description, initial_prompt, | |
output_path=os.path.join(opt.output_dump, 'generator')) | |
if opt.load_dump != '': | |
generation_pipeline.load_state(os.path.join(opt.load_dump, 'generator')) | |
best_generation_prompt = generation_pipeline.run_pipeline(opt.num_generation_steps) | |
print('\033[92m' + 'Calibrated prompt score:', str(best_generation_prompt['score']) + '\033[0m') | |
print('\033[92m' + 'Calibrated prompt:', best_generation_prompt['prompt'] + '\033[0m') | |