kendrickfff
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -13,13 +13,12 @@ import zipfile
|
|
13 |
from PIL import Image
|
14 |
import gradio as gr
|
15 |
|
16 |
-
#
|
17 |
-
# Ensure the .kaggle directory exists
|
18 |
kaggle_dir = os.path.expanduser("~/.kaggle")
|
19 |
if not os.path.exists(kaggle_dir):
|
20 |
os.makedirs(kaggle_dir)
|
21 |
|
22 |
-
|
23 |
kaggle_json_path = "kaggle.json"
|
24 |
kaggle_dest_path = os.path.join(kaggle_dir, "kaggle.json")
|
25 |
|
@@ -30,15 +29,14 @@ if not os.path.exists(kaggle_dest_path):
|
|
30 |
else:
|
31 |
print("Kaggle API key already exists.")
|
32 |
|
33 |
-
|
34 |
dataset_name = "mostafaabla/garbage-classification"
|
35 |
print(f"Downloading the dataset: {dataset_name}")
|
36 |
download_command = f"kaggle datasets download -d {dataset_name}"
|
37 |
|
38 |
# Run the download command
|
39 |
subprocess.run(download_command, shell=True)
|
40 |
-
|
41 |
-
# Step 4: Unzip the downloaded dataset
|
42 |
dataset_zip = "garbage-classification.zip"
|
43 |
extracted_folder = "./garbage-classification"
|
44 |
|
@@ -54,12 +52,12 @@ else:
|
|
54 |
print(f"Dataset zip file '{dataset_zip}' not found.")
|
55 |
|
56 |
|
57 |
-
|
58 |
|
59 |
from PIL import Image
|
60 |
import gradio as gr
|
61 |
|
62 |
-
# Load
|
63 |
def load_model():
|
64 |
model = models.resnet50(weights='DEFAULT') # Using default weights for initialization
|
65 |
num_ftrs = model.fc.in_features
|
@@ -116,7 +114,7 @@ def predict(image):
|
|
116 |
bin_color = bin_colors[class_name] # Get the corresponding bin color
|
117 |
return class_name, bin_color # Return both class name and bin color
|
118 |
|
119 |
-
#
|
120 |
iface = gr.Interface(
|
121 |
fn=predict,
|
122 |
inputs=gr.Image(type="numpy", label="Unggah Gambar"),
|
|
|
13 |
from PIL import Image
|
14 |
import gradio as gr
|
15 |
|
16 |
+
# Setup Kaggle API
|
|
|
17 |
kaggle_dir = os.path.expanduser("~/.kaggle")
|
18 |
if not os.path.exists(kaggle_dir):
|
19 |
os.makedirs(kaggle_dir)
|
20 |
|
21 |
+
Copy the kaggle.json file to the ~/.kaggle directory
|
22 |
kaggle_json_path = "kaggle.json"
|
23 |
kaggle_dest_path = os.path.join(kaggle_dir, "kaggle.json")
|
24 |
|
|
|
29 |
else:
|
30 |
print("Kaggle API key already exists.")
|
31 |
|
32 |
+
Download the dataset from Kaggle using Kaggle CLI
|
33 |
dataset_name = "mostafaabla/garbage-classification"
|
34 |
print(f"Downloading the dataset: {dataset_name}")
|
35 |
download_command = f"kaggle datasets download -d {dataset_name}"
|
36 |
|
37 |
# Run the download command
|
38 |
subprocess.run(download_command, shell=True)
|
39 |
+
Unzip the downloaded dataset
|
|
|
40 |
dataset_zip = "garbage-classification.zip"
|
41 |
extracted_folder = "./garbage-classification"
|
42 |
|
|
|
52 |
print(f"Dataset zip file '{dataset_zip}' not found.")
|
53 |
|
54 |
|
55 |
+
# Model training and testing in separate directory at ipynb file (Copy of ai-portfolio Kendrick.ipynb)
|
56 |
|
57 |
from PIL import Image
|
58 |
import gradio as gr
|
59 |
|
60 |
+
# Load model
|
61 |
def load_model():
|
62 |
model = models.resnet50(weights='DEFAULT') # Using default weights for initialization
|
63 |
num_ftrs = model.fc.in_features
|
|
|
114 |
bin_color = bin_colors[class_name] # Get the corresponding bin color
|
115 |
return class_name, bin_color # Return both class name and bin color
|
116 |
|
117 |
+
# Make Gradio interface
|
118 |
iface = gr.Interface(
|
119 |
fn=predict,
|
120 |
inputs=gr.Image(type="numpy", label="Unggah Gambar"),
|